img

QQ群聊

img

官方微信

  • CN 62-1112/TF 
  • ISSN 1005-2518 
  • 创刊于1988年
高级检索

黄金科学技术, 2023, 31(5): 736-751 doi: 10.11872/j.issn.1005-2518.2023.05.062

矿产勘查与资源评价

赣南印支期白石钨(铜)矿床成矿岩体地球化学特征及地质意义

李利,1,2, 王国光2, 李海立,3,4, 肖惠良3, 陈乐柱3

1.江苏城乡建设职业学院,江苏 常州 213147

2.南京大学内生金属矿床成矿机制研究国家重点实验室,江苏 南京 210023

3.中国地质调查局南京地质调查中心,江苏 南京 210016

4.中国科学技术大学,安徽 合肥 230026

Geochemical Characteristics and Geological Significance of the Ore-forming Granite of Indosinian Baishi W-Cu Deposit in Southern Jiangxi Province

LI Li,1,2, WANG Guoguang2, LI Haili,3,4, XIAO Huiliang3, CHEN Lezhu3

1.Jiangsu Urban and Rural Construction Vocational College, Changzhou 213147, Jiangsu, China

2.State Key Laboratory for Mineral Deposits Research, Nanjing University, Nanjing 210023, Jiangsu, China

3.Nanjing Geological Survey Center, China Geological Survey, Nanjing 210016, Jiangsu, China

4.University of Science and Technology of China, Hefei 230026, Anhui, China

通讯作者: 李海立(1990-),男,山东滨州人,博士研究生,工程师,从事矿床勘查和研究工作。njlihaili@163.com

收稿日期: 2023-04-23   修回日期: 2023-07-03  

基金资助: 江苏城乡建设职业学院校级科研项目“矿物自动识别技术在地质领域的应用研究——以TIMA为例”.  XJZK21013
南京大学内生金属矿床成矿机制研究重点实验室开放基金项目“江西德兴超大型斑岩型铜(钼金)矿田成矿流体和成矿机制研究”.  2022-LAMD-K09
江苏省高等学校基础科学(自然科学)研究面上项目“江苏东海毛北金红石矿流体成矿过程和成矿机制研究”.  22KJD170001
江苏省发改委项目“江苏省低碳建材与城乡生态工程研究中心”.  苏发改高技发[2021]1368号
中国地质调查局地质调查项目“江西遂川—石城地区锂铍铌钽等矿产地质调查”.  DD20230277

Received: 2023-04-23   Revised: 2023-07-03  

作者简介 About authors

李利(1990-),女,山东济宁人,讲师,博士,从事矿床学研究工作1084621165@qq.com , E-mail:1084621165@qq.com

摘要

白石钨(铜)矿床是赣南印支期的一个中型石英脉型矿床,其成矿岩体的研究薄弱。为探究成矿岩体的岩浆成因及其与成矿之间的关系,以白石花岗岩为对象,开展了地球化学研究。白石花岗岩具有富硅、总碱含量高、铝饱和指数高及分异指数较高的特征,在稀土元素配分曲线上显示右倾的特征,Eu异常明显,微量元素蛛网图上显示富集大离子亲石元素(如Rb、Th和U),亏损高场强元素(如Nb和Ti)。上述岩石地球化学特征及相关地球化学图解均表明白石花岗岩为分异的S型花岗岩。研究结果揭示,白石花岗岩为板内环境形成的花岗岩,源岩为泥质岩,形成过程以分离结晶作用为主,形成于印支造山运动后的伸展环境,与华南印支期的成矿作用密切相关。

关键词: 白石花岗岩 ; 岩石地球化学 ; S型花岗岩 ; 印支期 ; 成矿作用 ; 赣南

Abstract

The Baishi W-Cu deposit is a medium-sized quartz vein type deposit formed in Indosinian in southern Jiangxi Province.It belongs to the Nanling metallogenic belt.Although it had been exploited since the founding of the People’s Republic of China,few studies have been done on ore-forming mass.The Baishi granite is the main magmatic rock exposed in the mining area and it is recognized as the ore-forming rock.The Baishi granite has undergone carbonation,chlorite,and muscovite alteration.The Baishi granite has obvious tungsten and copper mineralization.In order to probe into the magma genesis and its relationship with metallogenesis,this study conducted detailed geochemical analysis for the Baishi granite.From the feature of the major elements,the Baishi granite has relatively high SiO2 contents (71.59%~75.36%),total alkali content(Na2O+K2O:6.28%~7.45%),aluminum saturation index(A/CNK:1.71~2.11) and differentiation index(DI:81.53~90.39).It can be inferred that the Baishi granite is peraluminous granite and it has a high degree of differentiation.In the characteristics of rare earth elements,the Baishi granite exhibits obvious enrichment of light rare earth elements,relative depletion of heavy rare earth elements(LREE/HREE=9.94~12.29) and obvious Eu negative anomaly(δEu=0.28~0.57).Additionally,in the diagram of trace element spider pattern,the Baishi granite is relatively enriched in large ion lithophile elements,such as Rb,Th and U,and depleted in high field strength elements,such as Nb and Ti.While Ba is depleted relative to Rb.The geochemical characteristics mentioned above and relevant geochemical diagrams of the Baishi granite display obvious characteristics of differential S-type granites.Based on the comprehensive analysis,it can be concluded that the Baishi granite is formed in the intraplate environment.The Baishi granite’s magma source is crust and it is mainly derived from the pelite.In addition,the fractional crystallization plays more important role in its forming process than partial melting.In terms of the tectonic setting,the Baishi granite was formed in the extensional environment after the Indosinian orogeny.More and more studies have shown that the Indosinian mineralization played an important role in W and Sn mineralization in South China,and the Baishi granite is closely related to the Indosinian mineralization in South China.

Keywords: Baishi granite ; geochemistry ; S-type granite ; Indosinian ; metallogenesis ; southern Jiangxi Province

PDF (9475KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

李利, 王国光, 李海立, 肖惠良, 陈乐柱. 赣南印支期白石钨(铜)矿床成矿岩体地球化学特征及地质意义[J]. 黄金科学技术, 2023, 31(5): 736-751 doi:10.11872/j.issn.1005-2518.2023.05.062

LI Li, WANG Guoguang, LI Haili, XIAO Huiliang, CHEN Lezhu. Geochemical Characteristics and Geological Significance of the Ore-forming Granite of Indosinian Baishi W-Cu Deposit in Southern Jiangxi Province[J]. Gold Science and Technology, 2023, 31(5): 736-751 doi:10.11872/j.issn.1005-2518.2023.05.062

我国拥有世界上最丰富的钨金属资源,我国的钨矿床主要集中在华南,其中,南岭成矿带是最著名的钨多金属成矿带,与中生代花岗岩有关的钨多金属成矿作用一直是地质学的研究热点(陈毓川等,1989华仁民等,2005裴荣富等,2008Mao et al.,2013)。燕山期是南岭地区大规模长英质岩浆作用和成矿作用最重要的时期(Peng et al.,2006丰成友等,2007Feng et al.,2011李光来等,2011Hu et al.,2012Zhou et al.,2015Chen et al.,2019Ni et al.,2021)。随着研究范围的不断扩大以及测试技术方法的快速进步,南岭成矿带乃至整个华南地区报道的印支期花岗岩及与其有关的钨成矿作用越来越多(刘善宝等,2010张迪等,2015Zhang et al.,2015彭能立等,2017Zhao et al.,2018Li et al.,2021)。许多研究者认为印支期成矿事件具有较好的成矿潜力,应加强印支期钨多金属矿床的找矿研究工作(梁华英等,2011毛景文等,2012丰成友等,2015王登红等,2020谢桂青等,2021)。

赣南白石钨(铜)矿是一个中型黑钨矿—黄铜矿石英脉型矿床,自新中国成立时就有民窟开采,但是目前对该矿床的研究仍然相对较少。白石钨(铜)矿一直被认为是与燕山期花岗岩有关的多金属矿(江西省地质局,1974)。最新研究数据表明该矿床形成于印支期,年代为226~223 Ma(Li et al.,2022),这为华南地区印支期钨成矿提供了证据支持。白石花岗岩为区域上大规模侵入的清溪岩体的一部分,前人对清溪岩体的稀土成矿潜力进行了相关研究(于扬等,2012陈斌峰等,2019),但是与钨铜多金属有关的成矿研究鲜有报道。因此,本文以白石钨(铜)矿的成矿岩体——白石花岗岩为研究对象,开展岩石地球化学研究,并探讨其成因及成矿潜力。

1 区域地质背景

白石钨(铜)矿在成矿构造带上处于南岭成矿带东段[图1(a)]。南岭成矿带内有2个主要的岩石构造单元,即前寒武纪基底地层和古生代以来的盖层单元。出露的基底地层主要是以新元古代砂岩和泥岩为主的碎屑沉积岩和火山岩夹层。盖层单元在南岭成矿带东西部存在显著差异,成矿带东部主要是震旦纪和早古生代低变质的砂岩—泥岩序列,局部为早古生代碳酸盐岩;成矿带西部盖层则以泥盆—三叠纪碳酸盐岩为主,其次为震旦纪和侏罗—白垩纪的碎屑岩和火山岩(Shu et al.,2011Ni et al.,2021)。该成矿带内发育大量多旋回花岗岩,形成大火成岩省(陈毓川等,1989王德滋等,2005)。南岭成矿带内的钨—锡矿床与花岗岩在空间、时间和成因上均具有紧密的联系(陈骏等,20082013Mao et al.,20132019Zhang et al.,2015Ni et al.,2021)。

图1

图1   白石钨(铜)矿区域地质简图

(a)华南燕山期花岗岩分布图(据Li et al.,2009);(b)赣南钨矿集区和典型钨—锡矿床分布图(据丰成友等,2015);(c)白石钨(铜)矿区域地质图(据刘欢等,2021

Fig.1   Regional geological map of Baishi tungsten (copper) deposit


白石钨(铜)矿位于南岭成矿带东段兴国矿集区[图1(b)]。矿区基底为震旦系浅海相,经历了绿片岩相变质作用,岩性组合以变砂岩、千枚岩和硅质岩为主。寒武系则以韵律砂岩—板岩为代表,几乎没有经历显著的变质作用。泥盆系和石炭系仅零星出露,前者以陆相碎屑岩为主,伴有少量海相钙质黏土岩;后者以陆相向海相过渡的泥砂碎屑沉积为特征。二叠—侏罗系出露较少,其中二叠系主要发育砾岩、粉砂岩、砂岩和凝灰岩;侏罗系发育含钙质页岩和石灰石。白垩纪火山岩、红色砂岩和砾岩广泛分布[图1(c)]。

区域内褶皱和断裂发育[图1(c)]。该区发育基底地层褶皱和盖层褶皱,基底地层褶皱主要为加里东期褶皱,空间展布方向以SN、NE和NW向为主。盖层褶皱由泥盆—石炭系组成,呈NW向展布。发育2条NE向区域性深断裂,即西北部的万安断裂和东南部的社富断裂。此外,由于该区自新元古代以来经历了多次地壳运动,各时期和各阶段的地壳运动也形成了一系列不同层次、不同性质的断裂,主要表现为印支—燕山期的多期次逆冲断层,按断裂带延伸方向可划分为4组,即NE、NNE、NW向和近EW向,其中NE和NNE向断层最为发育,属于脆性变形性质。从形成时间上来看,近EW向断层最早形成,NW向断层最晚形成(江西省地质局,1974)。

区域内地质构造复杂,经历了不同时代的构造岩浆旋回[图1(c)]。区域上加里东期、印支期和燕山期岩浆活动频繁,一般以复式深成岩体出现,形成多期多阶段的复式深成侵入岩体(江西省地质局,1974)。区内出露印支期侵入岩(如清溪岩体),岩性以黑云母花岗闪长岩和黑云二长花岗岩为主。燕山期侵入岩是区内分布最广的岩浆岩,岩性为黑云母花岗岩,如永丰和弹前侵入岩,燕山期岩体是区内钨、铜、钼和锡等多金属矿的主要成矿岩体,一般在接触带附近形成石英脉型和矽卡岩型矿床。加里东期侵入岩出露较少,以二长花岗岩为主。复式岩体规模大,呈岩基、岩株和岩枝状产出。此外,区内脉岩发育,基性岩至酸性岩均有发育,岩石类型有辉绿(玢)岩、闪长(玢)岩、花岗岩、花岗斑岩、石英斑岩、伟晶岩和细晶岩等,岩石呈脉状产出,一般规模较小。

2 矿床地质

新中国成立之前,赣南白石钨(铜)矿已有民窟生产,之后由220普查队和赣南大队等单位进行过普查及勘探。白石钨(铜)矿矿区出露地层主要由震旦系上部薄层状板岩夹薄层状砂岩、砂岩与板岩互层等2套岩石组成。矿区东部由寒武系下组硅质岩、碳质板岩和千枚岩等岩石组成(图2)。地层走向呈近SN向。

图2

图2   白石钨(铜)矿地质图(修改自江西省地质局,1974

1.白石岩体;2.花岗斑岩脉;3.石英斑岩脉;4.石英脉;5.震旦系;6.寒武系;7.钨铜矿体;8.断层;9.采样位置及编号

Fig.2   Geological map of the Baishi W-Cu deposit (modified after Geological Bureau of Jiangxi Province,1974)


矿区总体受SN向构造控制(图2)。矿区内常见轴向近SN向的小褶皱。矿脉充填于NWW和NNE向裂隙之中,且以NWW向为主,此组矿脉的裂隙具有明显的张性特征。NNE向矿脉仅在矿区北部见有数条,含矿情况较差,呈细小密集的裂隙,按其力学性质划分,属于压扭性裂隙。在NWW和NNE向2组裂隙交叉处形成了块状石英体。

白石钨(铜)矿床的形成与印支期白石岩体具有密切的关系,在矿区内出露有该岩体的东部边缘(图2),另外还有一些结核状的小型侵入体与之共生(江西省地质局,1974)。其中,白石钨(铜)矿岩性有细—中粒白云母花岗岩、花岗岩、石英斑岩和流纹斑岩。(1)细—中粒白云母花岗岩:见于矿区西部及矿区变质岩之下250~300 m处,以细粒结构为主,产状为岩瘤,本矿区仅为其东北部边缘部分。主要矿物为长石、石英和白云母,与变质岩接触处,白云母局部富集,从而具有云英岩的特征。(2)花岗岩和石英斑岩:2种岩性常呈过渡关系,主要由石英、正长石、斜长石、白云母和少量黄铁矿组成。该类岩石或充填于裂隙中呈脉状产出,或在裂隙交叉处呈岩滴产出。(3)流纹斑岩:仅见于民采窟中,具有明显流纹构造。

3 成矿花岗岩和矿化特征

矿区内白石花岗岩呈灰白—灰黄色,为花岗闪长质岩石[图3(a),3(b)]。主要矿物有:石英(40%~50%),呈他形粒状,无色,无解理,低正突起,干涉色一级灰白;斜长石(20%~25%),呈短柱状,白色,突起低,干涉色一级灰,见聚片双晶,有蚀变;钾长石(10%~15%),呈半自形—自形短柱状,白色,低突起,干涉色一级灰白,见简单双晶;白云母(5%~8%),呈鳞片状,白色,干涉色高级,具极完全解理,蚀变交代黑云母和斜长石等;黑云母(2%~5%),呈片状,深褐—浅褐色,多色性明显,一组极完全解理,干涉色Ⅱ级[图3(c),3(d)]。副矿物(1%~2%)包括磷灰石、金红石、榍石、锆石和独居石。

图3

图3   白石花岗岩岩相学特征

(a)含黑钨矿石英脉的白石花岗岩的野外照片;(b)白石花岗岩的手标本照片,其中含有矿化;(c),(d)白石花岗岩的显微镜下正交偏光照片;(e),(f)白石花岗岩的显微镜下反射光照片;Wol-黑钨矿;Ccp-黄铜矿;Q-石英;Kfs-钾长石;Pl-斜长石;Bt-黑云母;Ms-白云母

Fig.3   Petrographical characteristics of the Baishi granite


白石花岗岩具碳酸盐化、绿泥石化和白云母化蚀变[图3(c),3(d)]。其中,碳酸盐化表现为斜长石和黑云母等被蚀变为方解石和菱铁矿等;绿泥石化表现为黑云母被蚀变为绿泥石;白云母化表现为黑云母和斜长石被交代蚀变为白云母。同时,白石花岗岩中观察到有脉状和浸染状矿化,野外可见到白石花岗岩中有石英黑钨矿脉,以及浸染状黑钨矿、黄铜矿和石英共生,室内显微镜下同样可以观察到白石花岗岩中有黑钨矿和黄铜矿矿化[图3(a),3(b),3(e),3(f)]。白石花岗岩与该矿床的形成有密切关系,被认定为成矿岩体。

该矿床具钨、铜、钼、铋和锌矿化,是一个中型黑钨矿—黄铜矿石英脉型矿床。矿体主要为含钨脉状矿体。含钨脉状矿体产状主要为NWW向,其次为NNE向。产状呈NWW向的矿脉走向NW,倾向为NNE向。按其密集程度大致可划分为北区、中区和南区3个区段。矿脉总体上表现为脉状,但局部变化较大,在垂直和水平方向上均见尖灭再现等现象。白石钨(铜)矿核查区累计查明钨铜矿石101.8万t,WO3金属量8 959.18 t,Cu金属量10 416.08 t,Zn金属量1 412.22 t,Bi金属量1 346.01 t,钼金属量451.96 t(钟建昇等,2010)。

产状呈NWW向的矿脉中,矿物组合以黑钨矿为主,伴生有多种硫化物矿物,尤其是黄铜矿[图3(e),3(f)]。金属矿物中黑钨矿、黄铜矿、铁闪锌矿、辉钼矿、辉铋矿和白钨矿等较为常见,个别区段偶见黄铁矿、毒砂、锡石、斑铜矿、方铅矿和自然铋等,次生矿物有铜蓝、褐铁矿、孔雀石、钨华、钼华、铋华和铜铀云母等。非金属矿物以石英和黄玉等为主,偶见白云母、萤石、绿柱石、正长石、绢云母、锂云母和方解石等。

该矿区的成矿作用可划分为3个阶段:(1)石英—黑钨矿阶段,属伟晶—汽化期。生成的矿物有石英、黑钨矿、辉钼矿、白云母、绿柱石和黄玉等,在此时期生成的金属及汽成矿物多见于矿脉两侧,黑钨矿在此阶段大量沉淀。(2)石英硫化物阶段,属于中温阶段,黄铜矿在此时期大量沉淀,并见萤石和绢云母等矿物的生成。(3)碳酸盐岩阶段,为低温热液阶段,以方解石、绢云母和低温硅质物为主(江西省地质局,1974)。

4 试验方法

本次研究样品采自白石钨(铜)矿区,共采集5件样品,采样位置如图2所示。对5件岩石样品进行了主量、微量和稀土元素测试,测试工作由自然资源部第二海洋研究所检测中心完成。主量元素测试采用波长色散X射线荧光光谱法(XRF),仪器型号为Axios MAX,所有氧化物分析误差(RSD)小于5%。微量和稀土元素测试采用电感耦合等离子体质谱法(ICP-MS),仪器型号为Elan DRC-e,分析误差小于10%。

5 结果分析

白石花岗岩的主量、微量和稀土元素分析结果见表1。5件花岗岩样品有相对高的SiO2含量[w(SiO2)=71.59%~75.36%],全碱含量(K2O+Na2O)较高[w(K2O+Na2O)=6.28%~7.45%](表1图4),在SiO2-(K2O+Na2O)图解中,所有样品均落入花岗岩区内,Al2O3/(CaO+Na2O+K2O)(A/CNK)比值较高(1.71~2.11)(图5),属于过铝质花岗岩。白石花岗岩的主量元素特征与区域上大型钨矿床(如瑶岗仙钨矿、西华山钨矿和大吉山钨矿)的成矿岩体的主量元素特征相似,均为过铝质花岗岩。

表1   白石花岗岩全岩主量(%)、微量和稀土元素(×10-6)成分

Table 1  Major elements(wt),trace elements and rare earth elements(×10-6) compositions of the Baishi granite

样品编号SiO2Al2O3K2ONa2OTFe2O3FeOMgOTiO2CaOP2O5MnOLOI总计
G001-YQ1-173.9513.494.372.941.891.540.420.250.540.220.061.3399.46
G001-YQ1-273.6713.814.333.002.081.800.460.280.580.230.061.3199.81
G003-YQ1-170.1714.934.022.143.772.410.890.581.140.290.092.20100.22
G003-YQ1-270.1214.564.182.093.872.370.910.601.070.270.092.25100.02
G003-H171.3013.786.330.174.550.720.630.500.040.140.022.5299.98
样品编号A/CNKA/NKLaCePrNdSmEuGdTbDyHoEr
G001-YQ1-11.721.8535.2972.088.5230.665.990.544.820.743.980.742.22
G001-YQ1-21.751.8837.6677.259.1032.706.430.555.160.794.250.802.38
G003-YQ1-12.042.4273.16153.8416.6159.1510.791.408.861.266.521.223.59
G003-YQ1-21.982.3269.87145.3515.8556.5410.411.368.581.216.411.223.58
G003-H12.112.1268.55125.6415.2753.688.891.456.270.753.430.621.87
样品编号TmYbLuRbBaThUNbTaHfZrTiY
G001-YQ1-10.332.230.33395.51217.6718.9310.1121.804.224.12134.511 539.7522.82
G001-YQ1-20.352.340.35392.86204.1419.748.9823.744.774.59153.491 704.6124.24
G003-YQ1-10.503.190.49314.28632.8434.778.7818.741.906.08225.953 600.6335.88
G003-YQ1-20.503.280.49321.12638.9133.508.4319.061.926.41239.313 689.3335.80
G003-H10.261.770.28654.761 049.4625.257.2116.071.625.49204.373 071.1218.34
样品编号VCrCoNiLiSrBeScMnGaPbBiDI
G001-YQ1-116.725.062.461.88109.5044.1824,614.90438.3123.5926.403.7390.39
G001-YQ1-218.025.392.852.00110.9343.1523.394.75456.6623.5528.525.3290.05
G003-YQ1-149.3812.609.635.82124.63150.9811.178.33692.3425.0143.441.5582.04
G003-YQ1-251.1411.709.375.30128.11148.5610.408.35677.3424.3542.551.2381.53
G003-H140.2510.401.010.74274.32156.5812.457.69209.2323.50905.263.5483.55

注:分异指数DI的计算方法据Thornton et al.,1960

新窗口打开| 下载CSV


图4

图4   岩浆岩系统全碱—硅(TAS)分类图解

(底图据Middlemost,1994

注:Ir为Irvine 分界线,其上方为碱性,下方为亚碱性;瑶岗仙花岗岩数据来源于Li et al.(2020);西华山花岗岩数据来源于Guo et al.(2012);大吉山花岗岩数据来源于吴鸣谦(2017)

Fig.4   Total alkali silica (TAS) classification of magmatic rock system(base map according to Middlemost,1994


图5

图5   白石花岗岩的A/CNK-A/NK图解

(底图据Shand,1943

注:瑶岗仙花岗岩数据来源于Li et al.(2020);西华山花岗岩数据来源于Guo et al.(2012);大吉山花岗岩数据来源于吴鸣谦(2017)

Fig.5   A/NK-A/CNK diagram of the Baishi granite(base map according to Shand,1943


白石花岗岩稀土元素球粒陨石标准化分布型式表现为轻稀土富集,重稀土亏损的右倾型,LaN/YbN比值为10.69~26.14,呈明显的Eu负异常[图6(a)],δEu值为0.28~0.57。白石花岗岩微量元素原始地幔标准化分布型式表现为Rb、Th、U和Ta富集,Ba、Nb和Ti亏损[图6(b)],与瑶岗仙、西华山和大吉山花岗岩有相似之处。

图6

图6   白石花岗岩稀土元素球粒陨石标准化蛛网图(a)和微量元素原始地幔标准化蛛网图(b)(底图据Boynton,1984

Sun et al.,1989

Fig.6   Rare earth element chondrite-normalized spider diagram(a) and trace element primitive mantle-normalized spider diagram(b) of the Baishi granite(base map according to Boynton,1984Sun et al.,1989


6 讨论

6.1 成因类型

花岗岩的分类方案目前使用较多的是MISA(M型—幔源型,I型—壳幔同熔型,S型—壳幔改造型,A型—非造山型)成因分类方案(Chappell,1999吴福元等,2007),当花岗岩经历较高程度的结晶分异演化后,花岗岩还可以进一步划分为高分异I型和高分异S型(Whalen et al.,1987)。对于非高分异花岗岩,其类型判定已有大量研究,但对于高分异花岗岩,其矿物组成和化学成分均向低共结花岗岩趋近,因此对于高分异花岗岩的类型判定较困难,需要结合矿物学和地球化学等特征予以判定。

白石花岗岩主量元素具有SiO2含量较高[w(SiO2)=71.59%~75.36%](图4),全岩碱[w(K2O)+ w(Na2O)]含量(6.28%~7.45%)、铝饱和指数(A/CNK)(1.71~2.11)和分异指数DI高(81.53~90.39)的特点。同时,白石花岗岩磷、镁和钛含量均很低[w(P2O5):0.14%~0.29%,w(MgO):0.43%~0.93%,w(TiO2):0.26%~0.62%](表1)。这些特征均表明白石花岗岩经历了较高程度的结晶分异。

同时,白石花岗岩在稀土元素蛛网图上显示出明显的Eu异常,在微量元素蛛网图上显示出大离子亲石元素Rb、Th和U相对富集,而高场强元素Nb和Ti等相对亏损。当花岗质岩浆发生分异演化时,随着分异演化程度的增加,岩浆中的Li和Rb等元素含量也增加,而Cr、Ni、Sr和Ba等元素含量会降低,K/Rb、Zr/Hf和Nb/Ta等比值会降低(Linnen et al.,2002Lee et al.,2015)。白石花岗岩Rb含量高[w(Rb)平均值为415.71×10-6],Zr/Hf(32.64~37.34)和Nb/Ta(4.97~9.95)比值低,并且在w(Zr+Nb+Ce+Y)- FeOT/MgO图解上,5件样品中有3件落入分异的S型、I型和M型花岗岩区域,另外2件落入A型花岗岩区域[图7(a)]。但是,在w(SiO2)-FeOT/MgO图解上,5件样品均落入I型和S型花岗岩区域[图7(b)],因此可以认定白石花岗岩为分异的I型或S型花岗岩,而不是A型花岗岩。这种现象也印证了分异花岗岩类型判定的复杂性,需要结合多种图解或手段来确定。

图7

图7   白石花岗岩w(Zr+Nb+Ce+Y)-FeOT/MgO图解(a)(底图据Whalen et al.,1987)和w(SiO2)-FeOT/MgO图解(b)

(底图据Eby,1990

Fig.7   w(Zr+Nb+Ce+Y) - FeOT/MgO diagram(a)(base map according to Whalen et al.,1987) and w(SiO2) - FeOT/MgO diagram(b)(base map according to Eby,1990) of the Baishi granite


王德滋等(1993)以桐庐I型和相山S型碎斑熔岩为研究对象,得出Rb/Sr比值可以有效地反映出岩石类别,即I型具有低Rb/Sr比值(<0.9),而S型具有较高的Rb/Sr比值(>0.9)。本研究的白石花岗岩Rb/Sr比值在2.08~9.11之间,平均比值为5.3,符合S型花岗岩的特征。

研究表明,I型和S型花岗岩在SiO2-P2O5相关关系上有着明显的区别,I型花岗岩的P2O5含量随着SiO2含量的增加而降低,而S型花岗岩的SiO2含量与P2O5含量之间没有明显的相关性(Chappell,1999Broska et al.,2004李献华等,2007),根据这一指标可以有效区分I型和S型花岗岩。本研究的白石花岗岩样品中P2O5与SiO2之间无明显的相关性[图8(a)],符合S型花岗岩的特征。另外,在ACF图解中,白石花岗岩落在S型花岗岩的区域[图8(b)],白石花岗岩相对富集SiO2、K2O,而贫Na2O、CaO,在K2O-Na2O图解和TFeO-CaO图解上均落在S型花岗岩区域[图8(c),8(d)]。因此,本研究的白石花岗岩样品应为分异的S型花岗岩。

图8

图8   白石钨(铜)矿白石花岗岩w(SiO2)-w(P2O5)(a)、ACF(b)(底图据Nakada et al.,1979)、w(K2O)-w(Na2O)(c)和w(TFeO)-w(CaO)(d)图解(底图据Chappell et al.,2001

Fig.8   Diagram of w(SiO2)-w(P2O5)(a),ACF(b)(base map according to Nakada et al.,1979),w(K2O)-w(Na2O)(c)and w(TFeO)-w(CaO)(d)(base map according to Chappell et al.,2001) of the Baishi granite in the Baishi W-Cu deposit


6.2 岩浆起源及演化特征

白石花岗岩稀土元素配分模式具有显著的右倾特征,在稀土元素配分图上可以明显看出Eu负异常,说明该岩石可能经历了斜长石的分离结晶作用。另外,白石花岗岩的微量元素表现为相对富集Rb、Th和U等大离子亲石元素,而相对亏损Nb和Ti等高场强元素,元素Ba相对元素Rb亏损,表明岩浆源区中有地壳物质的参与。元素Rb相对富集指示岩浆经历较充分的分离结晶作用;元素Ti的相对亏损暗示岩浆经历了钛铁矿的结晶分异作用,同时也暗示了其源区中有地壳成分;元素Sr的亏损和Eu的负异常指示一致,与斜长石的分离结晶有关,暗示了白石花岗岩岩浆源区中的壳源部分经历了低程度的部分熔融(Harris et al.,1992)。综上,白石花岗岩经历了较高程度的演化,在其演化过程中发生了以斜长石和钛铁矿为主的分离结晶作用。

白石花岗岩的Zr/Hf比值为32.6~37.3,接近并略高于壳源岩石(约为33,Taylor et al.,1985),其Rb/Sr比值为2.08~8.95,平均比值为5.30,明显大于上部地壳的Rb/Sr比值(0.32),另外其具有明显的Eu异常,因此可以推断其岩浆来源于壳源物质(Ru-dnick et al.,1995);在δEu-(La/Yb)N图解[图9(a)]上,白石花岗岩均落在壳源花岗岩区域。因此,白石花岗岩的岩浆来源于壳源。

图9

图9   白石花岗岩的δEu-(La/Yb)N图解(a)(底图据Sylvester,1998)和CaO/(MgO+FeOT)-Al2O3/(MgO+FeOT)图解(b)

(底图据Gerdes et al.,2000

Fig.9   δEu-(La/Yb)N diagram(a)(base map according to Sylvester,1998) and CaO/(MgO+FeOT)-Al2O3/(MgO+FeOT

diagram(b)(base map according to Gerdes et al.,2000


S型花岗岩的源岩为泥质岩或砂质岩的副片麻岩(Brown et al.,1999),而酸性岩的岩浆源区又与其成分紧密相关,过铝质花岗岩的源区成分可以利用Al-Fe-Mg-Ti系统来确定。在CaO/(MgO+FeOT)- Al2O3/(MgO+FeOT)图解[图9(b)]上,白石花岗岩全部落入泥质岩源岩区域,说明白石花岗岩的源岩为泥质岩。一般认为,源区为泥质岩成分的花岗岩成熟度较高(Jung et al.,2007),说明白石花岗岩源区成分成熟度较高。因此,白石花岗岩应是壳源泥质岩发生低程度部分熔融和较高程度分离结晶形成的。

6.3 成矿背景及矿化指示作用

白石花岗岩一直被认为是燕山期的产物(江西省地质局,1974)。但是随着测试技术的不断发展革新以及地质调查工作的不断深入,白石花岗岩的年代归属有了新的认识,即其形成年代属于印支期(226~223 Ma)(Li et al.,2022)。前人对于华南印支期岩浆作用与成矿的地球动力学背景有不同的认识,主要有以下3种观点:(1)与太平洋板块向西俯冲有关(Holloway,1982Hsü et al.,1990任纪舜,1990);(2)与古太平洋板块的平板俯冲有关(Li et al.,2007);(3)与陆内造山作用有关(舒良树,2012Charvet,2013Li et al.,2021)。岛弧花岗岩的缺失暗示着中生代早期的岩浆事件与俯冲没有直接关系,反而有很多的地质证据支持陆内构造事件的发生,主要有3个方面:(1)岩石圈伸展和减薄背景下形成的大范围双峰式火山岩(陈培荣等,1999范尉茗等,2003);(2)华南缺失早中生代时期的蛇绿岩、俯冲杂岩体、俯冲相关的火山岩、弧岩浆作用以及高压变质作用(Shu et al.,20082015舒良树,2012Zhang et al.,2013Song et al.,2017);(3)有大量糜棱岩化花岗岩形成于区域变形作用之后,说明三叠纪时期存在挤压和伸展作用(徐夕生等,2003Liu et al.,2004)。在Rb-(Y+Nb)图解(图10)中,白石花岗岩样品均落在板内花岗岩区域,也暗示了其形成于陆内的环境。

图10

图10   白石花岗岩的Rb-(Y+Nb)图解(底图据Pearce

et al.,1984)

(base map according to Pearce et al.,1984

Fig.10   Rb-(Y+Nb)diagram of the Baishi granite


印支造山运动使得华南板块与华北板块整合,形成了统一的中国大陆。印支运动可能始于中二叠世(267~262 Ma)(Li et al.,2006),印支板块与华南地块的碰撞形成了松马缝合带(258~243 Ma)(孙涛等,2003),而华南板块与华北板块的碰撞形成了秦岭—大别缝合带(230~226 Ma)(刘福来等,2004)。在此过程中,碰撞力由南向北传递,可能与印支板块、华南板块和华北板块的顺序碰撞有关(孙涛等,2003刘福来等,2004郭春丽等,2012)。同时,一系列的碰撞作用导致强烈的岩浆作用和成矿作用,南岭地区虽处于华南腹地,但仍受多块体碰撞的远程影响(毛景文等,2012)。研究表明,强烈的伸展变形使地壳厚度增加了50 km (孙涛等,2003),地壳增厚引起地壳伸展、岩石圈强烈拆沉和减压增温熔融,形成花岗岩岩浆(Sylvester,1998Potratz et al.,2021),进一步使得该地区发育一系列早—中三叠世同碰撞花岗岩和晚三叠世后碰撞花岗岩(Zhou et al.,2006),其中白石花岗岩形成于晚三叠世(226~223 Ma)(Li et al.,2022)(图11)。因此,白石花岗岩形成于陆内造山后的伸展环境。

图11

图11   白石花岗岩和白石钨—铜矿形成的地球动力学背景(白石花岗岩和白石钨—铜矿形成年代据Li et al.,2022

according to Li et al.,2022

Fig.11   Geodynamic model for the forming of the Baishi granite and the Baishi W-Cu deposit(the formation age of the Baishi granite and the Baishi W-Cu deposit


同时,在伸展构造背景下,华南发生了一系列与花岗岩有关的钨多金属成矿作用(梁华英等,2011王登红等,2020谢桂青等,2021),白石钨(铜)矿就是其中之一(Li et al.,2022)。另外,分异的花岗岩与成矿紧密相关(吴福元等,2007),富含成矿流体的分异花岗岩岩浆对于不相容元素钨的富集非常有利,白石花岗岩属于分异的S型花岗岩,暗示着其具有一定的成矿潜力。另外,白石花岗岩在主量元素特征(图5)和微量元素特征(图6)上,均与著名大型钨矿的成矿岩体相似,如西华山、大吉山和瑶岗仙钨矿,从地球化学特征上也说明其具有成矿潜力。白石花岗岩中见明显矿化(图3),说明白石花岗岩具有较大的成矿潜力。

7 结论

(1)白石花岗岩具有硅、碱、铝饱和指数和分异指数高以及磷、镁、钛低的特点,Eu负异常明显,富集大离子亲石元素Rb、Th和U,亏损高场强元素Nb和Ti等,较高的Rb/Sr比值,说明白石花岗岩为分异的S型花岗岩。

(2)白石花岗岩的岩浆来源于壳源,源岩为泥质岩,其在形成过程中发生低程度部分熔融,较高程度分离结晶作用。

(3)白石花岗岩为板内花岗岩,形成于印支运动陆内造山后的伸展环境,与华南印支期大规模钨多金属成矿作用有关,具有较大的成矿潜力。

中国矿业网)

http://www.goldsci.ac.cn/article/2023/1005-2518/1005-2518-2023-31-5-736.shtml

参考文献

Boynton W V1984.

Cosmochemistry of the Rare Earth Elements:Meteorite Studies

[M]//Rare Earth Element Geochemistry.AmsterdamElsevier.

[本文引用: 2]

Broska IWilliams C TUher Pet al2004.

The geochemistry of phosphorus in different granite suites of the Western Carpathians,Slovakia:The role of apatite and P-bearing feldspar

[J].Chemical Geology,2051/2):1-15.

[本文引用: 1]

Brown MPressley R A1999.

Crustal melting in nature:Procecuting source processes

[J].Physics and Chemistry of the Earth,Part A:Solid Earth and Geodesy,243):305-316.

[本文引用: 1]

Chappell B W1999.

Aluminium saturation in I- and S-type granites and the characterization of fractionated haplogranites

[J].Lithos,46535-551.

[本文引用: 2]

Chappell B WWhite A J R2001.

Two contrasting granite types:25 years later

[J].Australian Journal of Earth Sciences,484):489-499.

[本文引用: 2]

Charvet J2013.

The Neoproterozoic-Early Paleozoic tectonic evolution of the South China Block:An overview

[J].Journal of Asian Earth Sciences,74198-209.

[本文引用: 1]

Chen BinfengZou XinyongPeng Linlinet al2019.

Geological characteristics and heavy rare earth ore prospecting potential of Qingxi pluton rare earth deposit

[J].Chinese Rare Earths,404):20-31.

[本文引用: 1]

Chen JunLu JianjunChen Weifenget al2008.

W-Sn-Nb-Ta-bearing granites in the Nanling range and their relationship to metallogenesis

[J].Geological of China Universities,144):459-473.

Chen JunWang RuchengZhu Jinchuet al2013.

Multiple-aged granitoids and related tungsten-tin mineralization in the Nanling range,South China

[J].Science China(Earth Sciences),441):111-121.

Chen L LNi PDai B Zet al2019.

The genetic association between quartz vein- and greisen-type mineralization at the Maoping W-Sn deposit,southern Jiangxi,China:Insights from zircon and cassiterite U-Pb ages and cassiterite trace element composition

[J].Minerals,97):411.

Chen PeirongKong XinggongWang Yinxiet al1999.

Rb-Sr isotopic dating and significance of Early Yanshanian Bimodal vocanic-intrusive complex from south Jiangxi Province

[J].Geological Journal of China Universities,54):378-383.

Chen YuchuanPei RongfuZhang Honglianget al1989.The Geology of Nonferrous and Rare Metal Deposits Related to Mesozoic Granitoids in the Nanling Region,China[M].BeijingGeological Publishing House.

Eby G N1990.

The A-type granitoids:A review of their occurrence and chemical characteristics and speculations on their petrogenesis

[J].Lithos,26115-134.

[本文引用: 2]

Fan WeimingWang YuejunGuo Fenget al2003.

Mesozoic mafic magmatism in Hunan-Jiangxi Provinces and the lithospheric extension

[J].Earth Science Frontiers,103):159-169.

Feng C YZeng Z LZhang D Qet al2011.

SHRIMP zircon U-Pb and molybdenite Re-Os isotopic dating of the tungsten deposits in the Tianmenshan-Hongtaoling W-Sn orefield,southern Jiangxi Province,China,and geological implications

[J].Ore Geology Reviews,431):8-25.

[本文引用: 1]

Feng ChengyouFeng YaodongXu Jianxianget al2007.

Isotope chronological evidence for Upper Jurassic petrogenesis and mineralization of altered granite-type tungsten deposits in the Zhangtiantang area,southern Jiangxi

[J].Geology in China,344):642-650.

Feng ChengyouZeng ZailinQu Wenjunet al2015.

A geochronological study of granite and related mineralization of the Zhangjiadi molybdenite-tungsten deposit in Xingguo County,southern Jiangxi Province,China,and its geological significance

[J].Acta Petrologica Sinica,313):709-724.

Gerdes AWÖRner GHenk A2000.

Post‐collisional granite generation and HT-LP metamorphism by radiogenic heating:The Variscan South Bohemian Batholith

[J].Journal of the Geological Society,1573):577-587.

[本文引用: 2]

Guo C LChen F CZeng Z Let al2012.

Petrogenesis of the Xihuashan granites in southeastern China:Constraints from geochemistry and in-situ analyses of zircon U-Pb-Hf-O isotopes

[J].Lithos,148209-227.

[本文引用: 2]

Guo ChunliZheng JiahaoLou Fashenget al2012.

Petrography,genetic types and geological dynamical settings of the Indosinian granitoids in South China

[J].Geotectonica et Metallogenia,363):457-472.

Harris N B WInger S1992.

Trace element modelling of pelite-derived granites

[J].Contributions to Mineralogy and Petrology,11046-56.

[本文引用: 1]

Holloway N H1982.

North Palawan block,Philippines—Its relation to Asian mainland and role in evolution of South China Sea

[J].The American Association of Petroleum Geologists Bulletin,661355-1383.

[本文引用: 1]

Hsü K JLi J LChen H Het al1990.

Tectonics of South China:Key to understanding West Pacific geology

[J].Tectonophy-sics,1839-39.

[本文引用: 1]

Hu R ZWei W FBi X Wet al2012.

Molybdenite Re-Os and muscovite 40Ar/39Ar dating of the Xihuashan tungsten deposit,central Nanling district,South China

[J].Lithos,150111-118.

[本文引用: 1]

Hua RenminChen PeirongZhang Wenlanet al2005.

Three major metallogenic events in Mesozoic in South China

[J].Mineral Deposits,242):99-107.

Jiangxi Bureau of Geology1974.

Regional geological survey report-Xingguo(1∶200 000)

[R].NanchangJiangxi Bureau of Geology.

Jung SPfänder J A2007.

Source composition and melting temperatures of orogenic granitoids:Constraints from CaO/Na2O,Al2O3/TiO2 and accessory mineral saturation thermometry

[J].European Journal of Mineralogy,196):859-870.

[本文引用: 1]

Lee C T AMorton D M2015.

High silica granites:Terminal porosity and crystal settling in shallow magma chambers

[J].Earth and Planetary Science Letters,40923-31.

[本文引用: 1]

Li GuanglaiHua RenminWei Xinglinet al2011.

Rb-Sr isochron age of single-grain muscovite in the Xushan W-Cu deposit central Jiangxi,and its geological significance

[J].Earth Science(Journal of China University of Geosciences),362):282-288.

Li LLi H LWang G Get al2022.

Geochronology of the Baishi W-Cu deposit in Jiangxi Province and its geological significance

[J].Minerals,1211):1387.

[本文引用: 6]

Li W SNi PPan J Yet al2021.

Constraints on the timing and genetic link of scheelite- and wolframite-bearing quartz veins in the Chuankou W ore field,South China

[J].Ore Geology Reviews,133126):104122.

[本文引用: 2]

Li W SNi PWang G Get al2020.

A possible linkage between highly fractionated granitoids and associated W-mineralization in the Mesozoic Yaogangxian granitic intrusion,Nanling region,South China

[J].Journal of Asian Earth Sciences,193104314.

[本文引用: 2]

Li X HLi W XLi Z X2007.

On the genetic classification and tectonic implications of the Early Yanshanian granitoids in the Nanling Range,South China

[J].Chinese Science Bulletin,5214):1873-1885.

[本文引用: 1]

Li X HLi W XWang X Cet al2009.

Role of mantle-derived magma in genesis of early Yanshanian granites in the Nanling Range,South China:In situ zircon Hf-O isotopic constraints

[J].Science in China(Series D:Earth Sciences),529):1262-1278.

[本文引用: 1]

Li X HLi Z XLi W Xet al2006.

Initiation of the Indosinian Orogeny in South China:Evidence for a Permian Magmatic Arc on Hainan Island

[J].The Journal of Geology,1143):341-353.

[本文引用: 1]

Li XianhuaLi WuxianLi Zhengxiang2007.

Re-discussion on the genetic classification and tectonic implications of the Yanshanian granitoids in the Nanling Range,South China

[J].Chinese Science Bulletin,529):981-991.

Liang HuayingWu JingSun Weidonget al2011.

Discussion on Indosinian mineralization in South China

[J].Acta Mineralogica Sinica,31Supp.1):53-54.

Linnen R LKeppler H2002.

Melt composition control of Zr/Hf fractionation in magmatic processes

[J].Geochimica et Cosmochimica Acta,6618):3293-3301.

[本文引用: 1]

Liu F LXu Z QLiou J Get al2004.

SHRIMP U-Pb ages of ultrahigh-pressure and retrograde metamorphism of gneisses,south-western Sulu terrane,eastern China

[J].Journal of Metamorphic Geology,224):315-326.

[本文引用: 1]

Liu FulaiXu ZhiqinYang Jingsuiet al2004.

Geochemical characteristics and UHP metamorphism of granitic gneisses in the main drilling hole of Chinese Continental Scientific Drilling Project and its adjacent area

[J].Acta Petrologica Sinica,201):9-26.

Liu HuanZhao XilinJiang Jianet al2021.

The formation mechanism of the Xingguo vortex structure and its geological implication for the Mesozoic sinistral strike-slip in South China Block

[J].Chinese Journal of Geology,563):808-828.

Liu ShanbaoChen YuchuanFan Shixianget al2010.

The second ore-prospecting space in the eastern and central parts of the Nanling metallogenic belt:Evidence from isotopic chronology

[J].Geology in China,374):1034-1049.

Mao J WCheng Y BChen M Het al2013.

Major types and time-space distribution of Mesozoic ore deposits in South China and their geodynamic settings

[J].Mineralium Deposita,483):267-294.

[本文引用: 2]

Mao J WOuyang H GSong S Wet al2019.

Geology and metallogeny of tungsten and tin deposits in China

[J].SEG Special Publication,22411-482.

[本文引用: 1]

Mao JingwenZhou ZhenhuaFeng Chengyouet al2012.

A preliminary study of the Triassic large-scale mineralization in China and its geodynamic setting

[J].Geology in China,396):1437-1471.

Middlemost E A K1994.

Naming materials in the magma/igneous rock system

[J].Earth Science Reviews,373/4):215-224.

[本文引用: 2]

Nakada STakahashi M1979.

Regional variation in chemistry of the Miocene intermediate to felsic magmas in the Outer Zone and the Setouchi Province of Southwest Japan

[J].The Geological Society of Japan,859):571-582.

[本文引用: 2]

Ni PWang G GLi W Set al2021.

A review of the Yanshanian ore-related felsic magmatism and tectonic settings in the Nanling W-Sn and Wuyi Au-Cu metallogenic belts,Cathaysia Block,South China

[J].Ore Geology Reviews,133104088.

[本文引用: 3]

Pearce J AHarris N B WTindle A G1984.

Trace element discrimination diagrams for the tectonic interpretation of granitic rocks

[J].Journal of Petrology,25956-983.

[本文引用: 1]

Pei RongfuWang YongleiLi Liet al2008.

South China great granite province and its metallogenic series of tungsten-tin poly-metallics

[J].China Tungsten Industry,231):10-13.

Peng J TZhou M FHu R Zet al2006.

Precise molybdenite Re-Os and mica Ar-Ar dating of the Mesozoic Yaogangxian tungsten deposit,central Nanling district,South China

[J].Mineralium Deposita,417):661-669.

[本文引用: 1]

Peng NengliWang XianhuiYang Junet al2017.

Re-Os dating of molybdenite from Sanjiaotan tungsten deposit in Chuankou area,Hunan Province,and its geological implications

[J].Mineral Deposits,366):1402-1414.

Potratz G LGeraldes M CMartins M V Aet al2021.

Sana Granite,a post-collisional S-type magmatic suite of the Ribeira Belt(Rio de Janeiro,SE Brazil)

[J].Lithos,388/389106077.

[本文引用: 1]

Ren Jishun1990.

On the geotectonics of south China

[J].Acta Geologica Sinica,42):275-288.

Rudnick R LFountain D M1995.

Nature and compositon of the continental crust:A lower crustal perspective

[J].Reviews of Geophysics,333):267-309.

Shand S J1943.Eruptive Rocks[M].New YorkJohn Wiley.

[本文引用: 2]

Shu L SFaure MWang Bet al2008.

Late Palaeozoic-Early Mesozoic geological features of South China:Response to the Indosinian collision events in Southeast Asia

[J].Com-ptes Rendus Geoscience,3402/3):151-165.

[本文引用: 1]

Shu L SFaure MYu J Het al2011.

Geochronological and geochemical features of the Cathaysia block (South China):New evidence for the Neoproterozoic breakup of Rodinia

[J].Precambrian Research,1873/4):263-276.

[本文引用: 1]

Shu L SWang BCawood P Aet al2015.

Early Paleozoic and Early Mesozoic intraplate tectonic and magmatic events in the Cathaysia Block,South China

[J].Tectonics,348):1600-1621.

[本文引用: 1]

Shu Liangshu2012.

An analysis of principal features of tectonic evolution in South China Block

[J].Geological Bulletin of China,317):1035-1053.

Song M JShu L SSantosh M2017.

Early Mesozoic intracontinental orogeny and stress transmission in South China:Evidence from Triassic peraluminous granites

[J].Journal of the Geological Society,1743):591-607.

[本文引用: 1]

Sun S SMcdonough W F1989.

Chemical and isotopic systematics of oceanic basalts:Implications for mantle composition and processes

[J].Geological Society,Special Publications,42313-345.

[本文引用: 2]

Sun TaoZhou XinminChen Peironget al2003.

The original model and tectonic setting for Mesozoic granites in Eastern Nanling Mountain range

[J].Science in China,3312):1209-1218.

Sylvester P J1998.

Post-collisional strongly peraluminous granites

[J].Lithos,4529-44.

[本文引用: 3]

Taylor S RMclennan S M1985.The Continental Crust:Its Composition and Evolution[M].OxfordBlackwell Scientific Publications.

[本文引用: 1]

Thornton C PTuttle O F1960.

Chemistry of igneous rocks,Part Ⅰ:Differentiation index

[J].American Journal of Science,258664-684.

[本文引用: 1]

Wang DenghongChen YuchuanJiang Biaoet al2020.

Preliminary study on the Triassic continental mineralization system in China

[J].Earth Science Frontiers,272):45-59.

Wang DeziLiu ChangshiShen Weizhouet al1993.

The contrast between Tonglu I-type and Xiangshan S-type clastoporphyritic lava

[J].Acta Petrologica Sinica,91):44-54.

Wang DeziZhou Jincheng2005.

New progress in studying the large igneous provinces

[J].Geological Journal of China Universities,111):1-8.

Whalen J BCurrie K LChappell B W1987.

A-type granites:Geochemical characteristics,discrimination and petrogenesis

[J].Contributions to Mineralogy and Petrology,95407-419.

[本文引用: 3]

Wu FuyuanLi XianhuaYang Jinhuiet al2007.

Discussions on the petrogenesis of granites

[J].Acta Petrologica Sinica,236):1217-1238.

Wu Mingqian2017.

Minerallogy,Geochemistry,and Metallogeny of the Yichun and the Dajishan Deposits

[D].BeijingChina University of Geosciences(Beijing).

Xie GuiqingMao JingwenZhang Changqinget al2021.

Triassic deposits in South China:Geological characteristics,ore forming mechanism and ore deposit model

[J].Earth Science Frontiers,283):252-270.

Xu XishengDeng PingReilly S Y Oet al2003.

Single zircon LA-ICP-MS U-Pb dating of Guidong complex (SE China) and its petrogenetic significance

[J].Chinese Science Bulletin,4812):1328-1334.

Yu YangChen ZhenyuChen Zhenghuiet al2012.

Zircon U-Pb dating and mineralization prospective of the Triassic Qingxi pluton in Southern Jiangxi Province

[J].Geotectonica et Metallogenia,363):413-421.

Zhang DiZhang WenlanWang Ruchenget al2015.

Quartz-vein type tungsten mineralization associated with the Indosinian(Triassic)Gaoling Granite,Miao’ershan Area,Nor-thern Guangxi

[J].Geological Review,614):817-834.

[本文引用: 2]

Zhang G WGuo A LWang Y Jet al2013.

Tectonics of South China continent and its implications

[J].Science China Earth Sciences,5611):1804-1828.

[本文引用: 1]

Zhang R QLu J JWang R Cet al2015.

Constraints of in situ zircon and cassiterite U-Pb,molybdenite Re-Os and muscovite 40Ar-39Ar ages on multiple generations of granitic magmatism and related W-Sn mineralization in the Wangxianling area,Nanling Range,South China

[J].Ore Geology Reviews,651021-1042.

Zhao ZZhao W WLu Let al2018.

Constraints of multiple dating of the Qingshan tungsten deposit on the Triassic W(-Sn) mineralization in the Nanling region,South China

[J].Ore Geology Reviews,9446-57.

[本文引用: 1]

Zhong JianshengShu ShunpingYin Weiqinget al2010.

Resource reserves verification report of the Baishi W-Cu deposit verification area,Ganxian,Jiangxi Province

[R].BeijingNational Geological Archives.DOI:10.35080/n01.c.158039.

Zhou X MSun TShen W Zet al2006.

Petrogenesis of Mesozoic granitoids and volcanic rocks in South China:A response to tectonic evolution

[J].Episodes,291):26-33.

[本文引用: 1]

Zhou YLiang X QWu S Cet al2015.

Isotopic geochemistry,zircon U-Pb ages and Hf isotopes of A-type granites from the Xitian W-Sn deposit,SE China:Constraints on petrogenesis and tectonic significance

[J].Journal of Asian Earth Sciences,105122-139.

[本文引用: 1]

陈斌峰邹新勇彭琳琳2019.

清溪岩体稀土矿床地质特征及重稀土找矿潜力

[J].稀土,404):20-31.

[本文引用: 1]

陈骏陆建军陈卫锋2008.

南岭地区钨锡铌钽花岗岩及其成矿作用

[J].高校地质学报,144):459-473.

[本文引用: 1]

陈骏王汝成朱金初2013.

南岭多时代花岗岩的钨锡成矿作用

[J].中国科学:地球科学,441):111-121.

[本文引用: 1]

陈培荣孔兴功王银喜1999.

赣南燕山早期双峰式火山-侵入杂岩的Rb-Sr同位素定年及意义

[J].高校地质学报,54):378-383.

[本文引用: 1]

陈毓川裴荣富张宏良1989.南岭地区与中生代花岗岩类有关的有色及稀有金属矿床地质[M].北京地质出版社.

[本文引用: 2]

范尉茗王岳军郭锋2003.

湘赣地区中生代镁铁质岩浆作用与岩石圈伸展

[J].地学前缘,103):159-169.

[本文引用: 1]

丰成友曾载淋屈文俊2015.

赣南兴国县张家地钼钨矿床成岩成矿时代及地质意义

[J].岩石学报,313):709-724.

[本文引用: 2]

丰成友丰耀东许建祥2007.

赣南张天堂地区岩体型钨矿晚侏罗世成岩成矿的同位素年代学证据

[J].中国地质,344):642-650.

[本文引用: 1]

郭春丽郑佳浩楼法生2012.

华南印支期花岗岩类的岩石特征、成因类型及其构造动力学背景探讨

[J].大地构造与成矿学,363):457-472.

[本文引用: 1]

华仁民陈培荣张文兰2005.

论华南地区中生代3次大规模成矿作用

[J].矿床地质,242):99-107.

[本文引用: 1]

江西省地质局1974.

区域地质调查报告——兴国幅(1∶200000)

[R].南昌江西省地质局.

[本文引用: 7]

李光来华仁民韦星林2011.

江西中部徐山钨铜矿床单颗粒白云母Rb-Sr等时线定年及其地质意义

[J].地球科学(中国地质大学学报),362):282-288.

[本文引用: 1]

李献华李武显李正祥2007.

再论南岭燕山早期花岗岩的成因类型与构造意义

[J].科学通报,529):981-991.

[本文引用: 1]

梁华英伍静孙卫东2011.

华南印支成矿讨论

[J].矿物学报,31增1):53-54.

[本文引用: 2]

刘福来许志琴杨经绥2004.

中国大陆科学钻探工程主孔及周边地区花岗质片麻岩的地球化学性质和超高压变质作用标志的识别

[J].岩石学报,201):9-26.

[本文引用: 2]

刘欢赵希林江涧2021.

华南中生代左行走滑活动探讨:以兴国旋卷构造为例

[J].地质科学,563):808-828.

[本文引用: 1]

刘善宝陈毓川范世祥2010.

南岭成矿带中、东段的第二找矿空间——来自同位素年代学的证据

[J].中国地质,374):1034-1049.

[本文引用: 1]

毛景文周振华丰成友2012.

初论中国三叠纪大规模成矿作用及其动力学背景

[J].中国地质,396):1437-1471.

[本文引用: 2]

裴荣富王永磊李莉2008.

华南大花岗岩省及其与钨锡多金属区域成矿系列

[J].中国钨业,231):10-13.

[本文引用: 1]

彭能立王先辉杨俊2017.

湖南川口三角潭钨矿床中辉钼矿Re-Os同位素定年及其地质意义

[J].矿床地质,366):1402-1414.

[本文引用: 1]

任纪舜1990.

论中国南部的大地构造

[J].地质学报,42):275-288.

[本文引用: 1]

舒良树2012.

华南构造演化的基本特征

[J].地质通报,317):1035-1053.

[本文引用: 2]

孙涛周新民陈培荣2003.

南岭东段中生代强过铝花岗岩成因及其大地构造意义

[J].中国科学(D辑),3312):1209-1218.

[本文引用: 3]

王德滋刘昌实沈渭洲1993.

桐庐I型和相山S型两类碎斑熔岩对比

[J].岩石学报,91):44-54.

[本文引用: 1]

王德滋周金城2005.

大火成岩省研究新进展

[J].高校地质学报,111):1-8.

[本文引用: 1]

王登红陈毓川江彪2020.

中国三叠纪大陆成矿体系

[J].地学前缘,272):45-59.

[本文引用: 2]

吴福元李献华杨进辉2007.

花岗岩成因研究的若干问题

[J].岩石学报,236):1217-1238.

[本文引用: 2]

吴鸣谦2017.

江西宜春(四一四)和大吉山矿床的矿物学、地球化学及成矿作用研究

[D].北京中国地质大学(北京).

[本文引用: 2]

谢桂青毛景文张长青2021.

华南地区三叠纪矿床地质特征、成矿规律和矿床模型

[J].地学前缘,283):252-270.

[本文引用: 2]

徐夕生邓平Reilly S Y O2003.

华南贵东杂岩体单颗粒锆石激光探针ICPMS U-Pb定年及其成岩意义

[J].科学通报,4812):1328-1334.

[本文引用: 1]

于扬陈振宇陈郑辉2012.

赣南印支期清溪岩体的锆石U-Pb年代学研究及其含矿性评价

[J].大地构造与成矿学,363):413-421.

[本文引用: 1]

张迪张文兰王汝成2015.

桂北苗儿山地区高岭印支期花岗岩及石英脉型钨成矿作用

[J].地质论评,614):817-834.

[本文引用: 1]

钟建昇舒顺平尹维青2010.

江西省赣县白石山钨铜矿核查区资源储量核查报告

[R].北京全国地质资料馆.DOI:10.35080/n01.c.158039.

[本文引用: 1]

/