img

QQ群聊

img

官方微信

  • CN 62-1112/TF 
  • ISSN 1005-2518 
  • 创刊于1988年
高级检索

黄金科学技术, 2024, 32(3): 387-399 doi: 10.11872/j.issn.1005-2518.2024.03.046

矿产勘查与资源评价

北祁连榆树沟山金矿区花岗闪长斑岩脉锆石U-Pb年龄、地球化学特征及其地质意义

杨彦,1, 黄增保,2,3, 郭小刚4, 许延龙2, 颜华2

1.甘肃省矿产资源储量评审中心,甘肃 兰州 730000

2.甘肃省地质调查院,甘肃 兰州 730000

3.甘肃省地学大数据工程研究中心,甘肃 兰州 730000

4.甘肃省有色金属地质勘查局白银矿产勘查院,甘肃 白银 730900

Zircon U-Pb Age and Geochemical Characteristics of Granodiorite Porphyry Veins in Yushugoushan Gold Deposit,Northern Qilian Mountain,and Its Geological Significance

YANG Yan,1, HUANG Zengbao,2,3, GUO Xiaogang4, XU Yanlong2, YAN Hua2

1.Gansu Provincial Mineral Resource and Reserve Evaluation Center, Lanzhou 730000, Gansu, China

2.Geological Survey of Gansu Province, Lanzhou 730000, Gansu, China

3.Geoscience Big Data Engineering Research Center of Gansu Province, Lanzhou 730000, Gansu, China

4.Baiyin Mineral Exploration Institute of Gansu Nonferrous Metal Geological Exploration Bureau, Baiyin 730900, Gansu, China

通讯作者: 黄增保(1978-),男,甘肃天水人,正高级工程师,从事基础地矿与矿产勘查工作。gsddyhzb@126.com

收稿日期: 2024-02-05   修回日期: 2024-03-13  

基金资助: 甘肃省自然基金项目“甘肃北山罗雅楚山地区沉积—变质型铁矿成矿规律与隐伏矿床预测”.  22JR5RA820
甘肃省重点人才项目“敦煌地块东南缘构造—岩浆作用与金矿关系研究预测”.  甘资人函[2022]49号

Received: 2024-02-05   Revised: 2024-03-13  

作者简介 About authors

杨彦(1974-),男,甘肃金昌人,高级工程师,从事矿产资源储量评审工作lzwy1018@126.com , E-mail:lzwy1018@126.com

摘要

榆树沟山金矿床位于北祁连造山带西段,是祁连成矿带内新发现的一个中型金矿床,矿床类型为岩浆期后热液型金矿,该金矿形成与花岗闪长斑岩脉热液蚀变关系密切。为了查明花岗闪长斑岩脉的成岩时代、源区性质和构造背景,开展了锆石U-Pb定年、Hf同位素和全岩地球化学研究工作。结果表明:花岗闪长斑岩脉的岩性为蚀变花岗闪长斑岩,侵入于阴沟群地层内构造破碎带中。该岩脉LA-ICP-MS锆石U-Pb年龄为(423.5±3.5)~(422.8±3.4)Ma,指示岩浆侵位时代为晚志留世。岩石具有低TFe2O3(1.57%~2.43%)和MgO(0.91%~1.43%)含量,高Al2O3(15.66%~17.20%)含量和A/CNK值(1.10~1.29),属于钙碱性准铝质系列岩石。岩石富集Rb、Ba、Sr和轻稀土元素,亏损Nb、Ta和Y、Yb等元素,具有高Sr含量(289×10-6~486×10-6)和Sr/Y比值(65.1~95.3),低Y(4.11×10-6~5.48×10-6)和Yb(0.38×10-6~0.49×10-6),与埃达克岩的地球化学特征相似。该岩体结晶锆石εHft)为正值(+7.50~+11.0),二阶段模式年龄(TDM2)为0.86~0.67 Ga,推测岩石起源于新元古代新生地壳物质的部分熔融。结合区域地质背景,初步认为榆树沟山矿区花岗闪长斑岩脉形成于祁连山造山带碰撞后伸展环境,晚志留世强烈陆内伸展作用诱发造山带新元古代新生洋壳发生部分熔融,形成埃达克质岩浆,沿断裂带形成了花岗闪长斑岩。

关键词: 北祁连造山带 ; 晚志留世 ; 榆树沟山金矿 ; 埃达克岩 ; 花岗闪长斑岩 ; 锆石U-Pb年龄

Abstract

Yushugoushan gold deposit is located in the western part of the north Qilian orogenic belt,it is a newly discovered medium-sized gold deposit.It belongs to post-magmatic hydrothermal gold deposit.The formation of the gold deposit is closely related to the hydrothermal alteration of the granodiorite porphyry veins.In order to confirm the intrusive age,lithogenesis and magma source characteristic of the granodiorite porphyry veins,the study of LA-ICP-MS zircon U-Pb isotopic dating,Hf isotope and whole-rock geochemical were carried out.The results show that the lithology of granodiorite porphyry veins is altered granodiorite porphyry,which intrudes into the structural fracture zone in the Yingou Group strata.The LA-ICP-MS zircon U-Pb age of granodiorite porphyrys obtained is (423.5±3.5)~(422.8±3.4)Ma,indicating that the magma emplacement age is Late Silurian.The major elements of granodiorite porphyrys are characterized by low TFe2O3(1.57%~2.43%),MgO(0.91%~1.43%)contents and A/CNK values(1.10~1.29),suggesting the granodiorite porphyrys belongs to the calcalkaline and peraluminous series rock.They are relatively enriched such as Rb,Ba,Sr and light rare earth elements,and depleted Nb,Ta and Y,Yb,it is characterized by high Sr content(289×10-6~486×10-6) and Sr/Y ratio (65.1~95.3),low content of Y (4.11×10-6~5.48×10-6) and Yb(0.38×10-6~0.49×10-6),this likely indicates adakitic granite.In-situ Hf isotope analysis of zircon shows that the εHft) values range from 7.50 to 11.0,and Hf two-stage model age is 0.86 Ga to 0.67 Ga,suggesting that the major rock is the product of partial melting of juvenile crust derived from the Neoproterozoic depleted mantle.Combined with the regional geological background,it is preliminarily considered that the Yushugoushan granodiorite porphyry veins is formed the post collision extension stageintracontinental extension,during the Late Silurian,strong intracontinental extension induced the partial melting of the Neoproterozoic juvenile crust in the orogenic belt,and formed adakitic magma.In the process of its continuous upwelling and evolution,the Yushugoushan granodiorite porphyry dyke were formed.

Keywords: North Qilian orogenic belt ; Late Silurian ; Yushugoushan gold deposit ; adakite ; granodiorite porphyry ; zircon U-Pb age

PDF (6307KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

杨彦, 黄增保, 郭小刚, 许延龙, 颜华. 北祁连榆树沟山金矿区花岗闪长斑岩脉锆石U-Pb年龄、地球化学特征及其地质意义[J]. 黄金科学技术, 2024, 32(3): 387-399 doi:10.11872/j.issn.1005-2518.2024.03.046

YANG Yan, HUANG Zengbao, GUO Xiaogang, XU Yanlong, YAN Hua. Zircon U-Pb Age and Geochemical Characteristics of Granodiorite Porphyry Veins in Yushugoushan Gold Deposit,Northern Qilian Mountain,and Its Geological Significance[J]. Gold Science and Technology, 2024, 32(3): 387-399 doi:10.11872/j.issn.1005-2518.2024.03.046

北祁连造山带与阿尔金断裂交切部位是甘肃省西部重要的金成矿区带,已发现鹰嘴山、寒山和车路沟等10余处中小型金矿床(樊新祥等,2019李生栋等,2020刘永彪等,2020刘彦良等,2021)。该地区金矿床主要有2种类型:一是构造热液型金矿,与构造破碎带有关,如寒山金矿(毛景文等,1998杨兴吉,1999叶得金等,2003孙佳楠等,2019闫茂强,2024);二是岩浆期后热液型金矿,与中酸性岩体热液蚀变有关,如车路沟金矿(杨建国等,2002)。前人从矿床地质特征、控矿条件、矿床成因和找矿标志等方面对构造热液型金矿进行了大量细致的研究(毛景文等,1998杨兴吉,1999杨建国等,20022005叶得金等,2003梁北山等,2011),初步认为该类型金矿床的形成受NW向剪切带的控制,成矿流体以深部流体为主。相比之下,针对岩浆期后热液型金矿的研究较为薄弱,前人仅对车路沟金矿床特征和找矿方向(杨建国等,2002),以及含矿岩体形成时代和岩石成因进行了研究(樊新祥等,2020张翔等,2023),对于区域上其余相同类型金矿床特征的报道较少,尤其是与成矿关系密切的中酸性岩体侵位时代、岩石成因及构造环境的认识尚不清晰,在一定程度上制约了对北祁连西段金成矿作用和机理的深入理解,不利于找矿突破。

榆树沟山金矿位于嘉峪关西北部约30 km处,是近年来在北祁连西段发现的一个中型金矿床。在野外地质调查过程中,发现该矿床矿体在空间上与晚志留世侵入的花岗闪长斑岩脉相伴产出,且花岗岩脉分布与矿化蚀变强度呈正相关关系,显示花岗岩脉对金矿形成具有明显的控矿作用。王洋等(2020)对榆树沟山金矿地质特征和找矿标志进行了研究,认为该矿床受构造控制,属于变质热液型金矿。然而,目前关于该矿床形成的构造背景研究较为薄弱,且缺少对与金成矿关系密切的花岗闪长斑岩的研究,从而制约了对该地区金矿成矿作用和控矿因素的理解与认识。为深入剖析榆树沟山金矿成矿过程及其与花岗闪长斑岩之间的关系,在以往地质工作的基础上,对榆树沟山矿区花岗闪长斑岩开展了锆石U-Pb测年、微量元素和Hf同位素组成分析,阐释了岩体侵位时代、岩浆源区性质和构造背景,以期为揭示北祁连西段金成矿作用及查明控矿因素提供科学依据。

1 区域地质背景及样品描述

1.1 区域地质背景

北祁连造山带位于青藏高原东北缘,为一典型的加里东期增生造山带,呈NW向挟持于阿拉善地块、敦煌地块与中祁连地块之间[图1(a)],先后经历了早古生代洋盆扩张、俯冲消减,陆陆碰撞造山过程,以及晚古生代以来的陆内汇聚等复杂构造演化(Songet al.,2013)。研究区位于北祁连造山带西段[图1(b)],区域地层主要有寒武系黑刺沟组玄武岩和安山玄武岩,下奥陶统阴沟群变砂岩和绢云绿泥板岩等。发育2期区域断裂,早期为NW向断裂,控制着区域金矿床分布,晚期为NE-NNE向断裂,对金矿体有破坏作用(张翔等,2023)。区内侵入岩不发育,主要有志留纪超基性杂岩和英云闪长岩体,以及少量花岗闪长斑岩脉和石英脉,且与金矿成矿关系密切。区域上分布有红柳沟和榆树沟山等中型金矿,以及阴洼沟等6处金矿点,其中榆树沟山金矿区花岗闪长斑岩脉为本次研究对象。

图1

图1   祁连西段大地构造位置(a)和榆树沟山地区地质简图(b)(修改自王洋等,2020

1.第四系全新统;2.第四系更新统;3.新近系疏勒河组;4.白垩系下沟组;5.侏罗系赤金堡组;6.侏罗系龙凤山组;7.奥陶系阴沟群;8.寒武系黑刺沟组;9.志留纪英云闪长岩;10.志留纪超基性岩;11.花岗闪长斑岩脉/石英脉;12.金矿床;13.断层/角度不整合界线

Fig.1   Tectonic location of western section of Qilian Moutain(a) and geological map of Yushugoushan area(b)(modified after Wang et al.,2020


1.2 榆树沟山金矿床地质特征

榆树沟山金矿床位于甘肃省嘉峪关市西北部约30 km处。矿区出露地层以下奥陶统阴沟群为主,由灰绿色绿泥板岩和变砂岩组成,为一套滨浅海相碎屑岩建造。矿区内总体为一复式背斜构造,平行背斜轴面发育20余条NW向断裂,长度为1~3 km,宽度为30~100 m,沿断裂发育有褐铁矿化、绿泥石化、硅化和赤铁矿化等热液蚀变,并见有石英细脉和网脉,铁质碳酸盐细脉充填,形成褐黄色金矿化蚀变带。矿区侵入岩主要为花岗闪长斑岩脉和石英脉,呈NW向展布(图2),与金矿化关系密切。经探矿工程采样分析,共圈定金矿体9条,分布在Ⅲ、Ⅳ、Ⅵ、Ⅶ和Ⅹ金矿化蚀变带内,呈透镜状和似板状,NW向展布,矿体长度为60~220 m,厚度为0.94~2.24 m,平均品位为1.98×10-6~12.53×10-6,沿走向和倾向均具有膨大收缩现象。矿石具有细脉—网脉状构造,半自形—他形粒状结构,矿石矿物主要为黄铁矿,还有少量黄铜矿和褐铁矿等;脉石矿物主要为长石和石英,还有少量绢云母和绿泥石等。金主要赋存在黄铁矿、黄铜矿、石英和褐铁矿等矿物中,以自然金形式产出。

图2

图2   榆树沟山金矿床地质简图(修改自王洋等,2020

1.第四系全新统;2.新近系疏勒河组;3.白垩系下沟组;4.奥陶系阴沟群变砂岩;5.奥陶系阴沟群绢云绿泥板岩;6.花岗闪长斑岩脉;7.金矿化蚀变带及编号;8.勘探线

Fig.2   Geological map of Yushugoushan gold deposit(modified after Wang et al.,2020


1.3 花岗斑岩脉及样品描述

榆树沟山金矿区的花岗闪长斑岩脉主要分布在Ⅲ、Ⅳ、Ⅳ、Ⅵ和Ⅹ等金矿化蚀变带及其两侧,呈岩脉产出,走向为NWW向,脉体长度为200~3 000 m,宽度为5~10 m,岩性为花岗闪长斑岩,侵入于奥陶系阴沟群中,局部充填在金矿化蚀变带内[图3(a)、3(b)],与围岩接触处见明显褪色蚀变现象,尤其是与金矿化蚀变岩带接触处,具有强烈的褐铁矿化、绿泥石化、硅化和赤铁矿化等热液蚀变,且金矿化较强。花岗闪长斑岩,新鲜面为灰白色,风化面呈土黄色,具有块状构造,斑状结构[图3(c)、3(d)],斑晶含量为15%~30%,主要为斜长石和角闪石。其中,斜长石呈半自形粒状,发育有聚片双晶,粒径为2~5 mm,含量为10%~20%,见有不同程度的绢云白母化;角闪石含量为5%~10%,完全绿泥石化,仅保留晶形轮廓。基质具显微晶质结构[图3(d)],含量为70%~85%,粒径小于0.2 mm,主要由半自形—他形粒状斜长石(20%~35%)、石英(25%~55%)和少量蚀变角闪石(0~10%)、白云母(0~5%)组成。

图3

图3   榆树沟山金矿花岗闪长斑岩脉野外产出特征及显微照片

(a)、(b)花岗闪长斑岩野外产出特征;(c)花岗闪长斑岩标本;(d)花岗闪长斑岩正交偏光显微照片;Ⅳ-金矿化蚀变带;γπ-花岗闪长斑岩;O1Y-奥陶系阴沟群;Pl-斜长石;Qtz-石英;Ms-白云母

Fig.3   Field output characteristics and microscopic photos of granodiorite porphyry veins in Yushugoushan gold deposit


本次样品采自Ⅲ号金矿化蚀变带和Ⅳ号蚀变带中的花岗闪长斑岩,选择蚀变弱未风化的新鲜岩石采集锆石U-Pb定年样品2件(编号分别为2YTW-1和2YTW-2),其中2YTW-1样品分析Lu-Hf同位素;采集10件代表性岩石样品进行全岩主量和微量元素测试,采样位置如图2所示。

2 测试分析方法

2.1 锆石U-Pb定年和Lu-Hf同位素测试

本研究采用常规方法在廊坊岩拓地质服务有限公司进行了锆石分选、挑选和粘靶,并打磨抛光至锆石中心部位。然后,由武汉上谱分析有限公司完成阴极发光(CL)拍照、U-Pb定年和Lu-Hf同位素测试。其中,锆石U-Pb定年采用激光剥蚀电感耦合等离子体质谱仪分析,激光剥蚀束斑直径为32 nm,频率为5 Hz;采用锆石标准91500校正了同位素比值。分析数据使用ICPMSDatacal 10.9程序(Liu et al.,2008)进行了离线处理,利用Isoplot/Ex_ver3 程序(Ludwig,2003)进行了年龄加权平均计算和年龄谐和图绘制。

使用激光剥蚀多接收器等离子体质谱仪(LA-MC-ICP-MS)对锆石原位微区Lu-Hf同位素进行测试。测试点基本与样品锆石U-Pb定年测试点位置一致,以He作为剥蚀物质载气,激光束斑直径为44 μm,频率为8 Hz,采用锆石标准91500作为参考物质,分析方法及数据处理方法参见Hu et al.(2012)

2.2 主量和微量元素测试

主量和微量元素测试分析由武汉上谱分析科技有限责任公司完成。除FeO采用重量法测定和烧失量采用减重法测定外,其余主量元素采用X射线荧光光谱仪(XRF)进行分析,测试相对标准偏差小于2%。微量元素测试分析使用ICP-MS仪,分析误差小于10%。

3 测试分析结果

3.1 锆石U-Pb年龄

榆树沟山矿区花岗闪长斑岩LA-ICP-MS 锆石U-Pb定年分析结果见图4表1。样品中锆石呈无色—浅灰色,多数为短柱状晶体,少数为自形短柱状,长度为100~200 μm,宽度为50~100 μm,长宽比为1∶1~2∶1,阴极发光图像显示大部分锆石发育有明显的震荡环带,其中2YTW-1样品中部分锆石中有继承性核。

图4

图4   榆树沟山金矿花岗闪长斑岩锆石U-Pb年龄谐和图

Fig.4   Zircon U-Pb age concordia diagram of granodiorite porphyry in Yushugoushan gold deposit


表1   榆树沟山金矿花岗闪长斑岩锆石LA-ICP MS U-Pb测年结果

Table 1  Zircon LA-ICP MS U-Pb dating results of granodiorite porphyry in Yushugoushan gold deposit

分析点w(B)/(×10-6Th/U同位素比值同位素年龄/Ma
ThU207Pb/206Pb1σ207Pb/235U1σ206Pb/238U1σ207Pb/206Pb1σ207Pb/235U1σ206Pb/238U1σ
2YTW-1-0125.072.00.350.05770.00270.53810.02420.06850.0010520103437164276
2YTW-1-0242.51030.410.05550.00210.51130.01800.06720.000743288419124195
2YTW-1-0343.099.30.430.05400.00210.51320.02020.06890.000736989421144304
2YTW-1-0486.91600.540.05610.00190.52450.01770.06780.000645771428124234
2YTW-1-0761.41300.470.05390.00210.49900.01840.06730.000836985411124205
2YTW-1-0827.167.70.400.05660.00280.52290.02450.06760.0009476109427164225
2YTW-1-091272060.620.05700.00160.52680.01520.06690.000650060430104184
2YTW-1-1061.91200.520.05680.00210.53550.01990.06830.000848347435134265
2YTW-1-121422980.480.05710.00140.54950.01440.06940.00074945244594334
2YTW-1-132474030.610.05800.00120.56440.01190.07050.00065284445484393
2YTW-1-1443.11010.430.05630.00230.52060.02100.06740.000746591426144204
2YTW-1-1560.21170.520.05620.00200.52090.01810.06760.000846175426124215
2YTW-1-171061600.660.05660.00160.51790.01460.06650.000647663424104154
2YTW-1-2034.877.90.450.06000.00280.55790.02680.06730.0010611104450174206
2YTW-1-2258.81250.470.05670.00220.52830.01990.06770.000748085431134224
2YTW-1-2359.81280.470.05490.00200.51070.01830.06760.000740681419124214
2YTW-1-2438.01060.360.05410.00220.50070.01960.06720.000737691412134194
2YTW-1-051573600.440.16510.002410.19030.14960.44590.00312 509252 452142 37714
2YTW-1-061781880.950.07580.00171.93840.04150.18490.00151 100441 094141 0948
2YTW-1-111182730.430.06940.00141.28300.04290.13250.0032911368381980218
2YTW-1-181141330.850.07020.00161.55930.03750.16080.00151 00047954159618
2YTW-1-212333520.660.10050.00153.35410.07450.24050.00351 633281 494171 38918
2YTW-2-0130.975.30.410.05640.00290.53930.02820.06910.0008465115438194315
2YTW-2-0282.51330.620.05830.00220.55260.02310.06810.000854382447154245
2YTW-2-0336.296.90.370.04690.00970.54330.10960.06750.001355.7420441724218
2YTW-2-0431.967.40.470.05310.00300.50420.02630.06940.0009332131415184335
2YTW-2-0557.41280.450.05530.00210.52090.02020.06820.000843385426134255
2YTW-2-0624.967.00.370.05040.00260.47910.02380.06910.0009213114397164315
2YTW-2-0757.61300.440.05300.00180.48500.01690.06660.000832875401124165
2YTW-2-081332230.600.05670.00160.54290.01560.06950.000948061440104335
2YTW-2-0935.183.90.420.05550.00240.52660.02280.06890.000843592430154305
2YTW-2-1036.875.90.490.05880.00250.56110.02320.06980.000956193452154356
2YTW-2-1131.479.40.390.05640.00260.51300.02200.06670.0009478102420154165
2YTW-2-1299.81780.560.05760.00180.52480.01590.06600.000652267428114124
2YTW-2-1345.21000.450.05450.00210.51350.01930.06830.000839187421134265
2YTW-2-1459.51430.420.05930.00200.54600.01780.06680.000758976442124174
2YTW-2-1550.41200.420.05970.00240.54900.02090.06680.000759187444144174
2YTW-2-1634.887.60.400.05920.00210.55730.01990.06830.000957680450134266
2YTW-2-1764.71490.440.06030.00210.55380.01920.06640.000761344448134144
2YTW-2-1958.61190.490.05430.00220.50660.02090.06740.000738386416144204
2YTW-2-2064.61320.490.05780.00220.54480.02010.06830.000752483442134264

新窗口打开| 下载CSV


2YTW-1样品共分析22颗锆石点[图4(a)],锆石U含量为67.7×10-6~403.0×10-6,Th含量为25.0×10-6~247.0×10-6,Th/U比值为0.35~0.95,结合大部分锆石发育有明显的震荡环带,显示岩浆成因锆石特征(Hoskin et al.,2000)。其中,17个分析点的测试分析结果显示,206Pb/238U年龄范围为(439±3)~(415±4)Ma,加权平均值为(423.5±3.5)Ma(MSWD=2.5,N=17),另有5粒锆石年龄分别为(2 377±14)Ma、(1 094±8)Ma、(802±18)Ma、(961±8)Ma和(1 389±18)Ma,结合锆石阴极发光照片,认为其属于继承性锆石。

2YTW-2样品共分析20颗锆石点[图4(b)],U、Th含量分别为67.0×10-6~223.0×10-6和24.9×10-6~133.0×10-6,Th/U比值为0.37~0.62,结合锆石发育有明显的震荡环带,初步认为其属于岩浆锆石。19个分析点的测试分析结果显示,206Pb/238U年龄范围为(435±6)~(412±4)Ma,加权平均值为(422.8±3.4)Ma(MSWD=2.2,N=19),代表花岗闪长斑岩的结晶年龄。

3.2 锆石原位Hf同位素

Hf同位素测试选取2YTW-1样品花岗闪长斑岩中的锆石,测试点位与U-Pb定年位置基本一致,结果见表2。由表2可知,锆石样品176Yb/177Hf比值为0.019017~0.055032,176Lu/177Hf比值为0.000503~0.001456,176Hf/177Hf比值为0.281561~0.282830;利用相应的锆石U-Pb年龄计算出εHft)值为+7.59~+19.55,选取平均地壳176Lu/177Hf值计算(Griffin et al.,2004),获得二阶段模式年龄(TDM2)为2 317~663 Ma。其中,15粒岩浆锆石176Hf/177Hf比值为0.282733~0.282830,εHft)值为+7.5~+11.1,二阶段模式年龄(TDM2)为655~861 Ma;其余7粒继承性锆石中有3粒(1-05、1-11和1-21)εHft)值为正值,分别为+9.72、+12.94和+19.55,二阶段模式年龄(TDM2)分别为2 317,869,980 Ma,另外4粒(1-06、1-12、1-13和1-18)εHft)值为负值,分别为-3.86、-7.59、-2.24和-4.57,二阶段模式年龄(TDM2)分别为2 027,1 710,1 420,1 961 Ma。

表2   榆树沟山金矿花岗闪长斑岩锆石Hf同位素分析结果

Table 2  Zircon Hf isotopic analysis results of granodiorite porphyry in Yushugoushan gold deposit

分析点年龄/Ma176Lu/177Hf176Yb/177Hf176Hf/177Hf1σεHft1σTDM1/MaTDM2/MafLu/Hf
2YTW-1-014270.0008910.0330700.2828080.00001210.420.69628708-0.97
2YTW-1-024190.0008210.0291170.2828300.00001211.080.68595665-0.98
2YTW-1-034300.0009140.0335990.2827810.0000139.520.71666760-0.97
2YTW-1-044230.0009330.0338730.2828020.00001410.100.74637723-0.97
2YTW-1-074200.0006760.0236520.2827880.0000139.620.71653747-0.98
2YTW-1-084220.0006510.0235880.2827590.0000128.650.69692802-0.98
2YTW-1-094180.0010010.0368830.2828050.00001410.100.73633718-0.97
2YTW-1-104260.0009320.0332170.2827860.0000139.630.72659751-0.97
2YTW-1-124330.0012790.0422160.2822990.000014-7.590.731 3551 710-0.96
2YTW-1-134390.0014560.0550320.2824470.000015-2.240.761 1511 420-0.96
2YTW-1-144200.0007120.0249110.2827810.0000149.360.73663762-0.98
2YTW-1-154210.0008800.0296010.2827750.0000149.140.73674775-0.97
2YTW-1-174150.0009870.0337380.2827330.0000157.500.77735861-0.97
2YTW-1-204200.0008070.0265030.2827650.0000158.780.75687794-0.98
2YTW-1-224220.0009030.0308130.2827790.0000159.280.75669767-0.97
2YTW-1-234210.0009840.0338960.2827600.0000158.590.77697805-0.97
2YTW-1-244190.0008300.0306870.2828230.00001210.810.69605680-0.97
2YTW-1-052 3770.0005030.0190170.2815610.0000209.720.982 3352 317-0.98
2YTW-1-061 0940.0007320.0279000.2819930.000013-3.860.761 7582 027-0.98
2YTW-1-118020.0007040.0263210.2826470.00001312.940.74850869-0.98
2YTW-1-189610.0006950.0251920.2820540.000013-4.570.741 6721 961-0.98
2YTW-1-211 3890.0009040.0328230.2824750.00002119.550.961 096980-0.97

新窗口打开| 下载CSV


3.3 岩石主量和微量元素

榆树沟矿区花岗闪长斑岩主微量元素测试结果见表3。花岗闪长斑岩SiO2含量较高,变化范围为64.9%~67.9%,具有相对较低的TFe2O3(1.57%~2.43%)、MgO(0.91%~1.43%)和较低的Mg#值(10~25)。样品中K2O含量为1.61%~2.92%,Na2O+K2O含量为6.05%~6.86%,属于钙碱性系列[图5(a)];Al2O3含量为15.7%~17.2%,CaO含量为2.04%~3.33%,A/CNK含量较高,在1.10~1.29之间,具有过铝质花岗岩特征[图5(b)]。

表3   榆树沟山金矿花岗闪长斑岩主量元素(%)和微量元素(×10-6)分析结果

Table 3  Analysis results of major elements(%) and trace elements(×10-6)of granodiorite porphyry in Yushugoushan gold deposit

元素(化合物)名称样品编号及分析结果
2YY-12YY-22YY-32YY-42YY-52YY-62YY-72YY-82YY-9
SiO267.267.966.265.966.966.564.967.166.5
TiO20.210.200.200.200.220.210.200.210.20
Al2O316.115.716.716.117.216.516.516.415.9
TFe2O31.821.581.572.431.902.111.781.711.78
FeO0.800.700.540.540.300.500.600.820.82
MnO0.040.030.040.080.050.050.040.040.18
MgO1.411.081.121.240.911.061.391.431.37
CaO2.472.422.852.872.042.543.332.102.30
Na2O4.464.704.564.074.484.384.354.513.94
K2O2.171.731.612.392.112.221.702.052.92
P2O50.070.070.070.070.070.070.060.070.07
LOI4.204.364.894.634.013.915.893.984.53
total10099.799.810099.999.610099.599.7
Mg#373536282728383937
A/NCK1.141.121.161.111.291.161.101.221.15
σ1.821.661.641.821.821.851.671.792.00
Li31.537.733.419.636.823.08.3142.13.92
Be1.170.951.181.091.191.031.091.471.56
Sc3.583.283.453.683.963.853.453.383.39
V23.122.522.224.727.124.923.022.924.7
Cr24.622.731.632.937.335.632.124.123.1
Co4.263.814.155.934.695.064.864.683.26
Ni17.215.012.722.816.626.020.618.511.1
Cu8.106.502.348.4310.43.242.748.483.23
Zn23.319.512.721.916.919.820.629.912.1
Ga17.016.216.817.018.217.517.417.317.3
Rb82.565.354.193.777.187.057.179.1123
Hf2.432.262.272.332.442.462.192.582.56
Ta0.110.120.100.110.130.130.090.110.11
Tl0.440.390.310.530.430.450.320.470.65
Pb8.296.425.934.236.175.054.536.477.18
Th1.901.801.642.072.122.121.671.931.90
U1.610.850.691.001.141.100.841.080.85
Sr482374411329352365289486352
Y5.064.444.325.054.995.204.115.485.15
Zr81.073.771.972.480.376.168.881.382.8
Nb1.511.451.361.671.801.651.291.581.51
Sn0.560.500.490.530.580.530.410.600.53
Cs5.354.343.505.315.135.073.975.426.83
Ba295282585748305385233285502
Sr/Y95.384.095.265.170.570.270.488.768.2
La5.445.545.295.865.915.845.215.865.69
Ce11.711.711.212.312.512.311.112.812.2
Pr1.501.551.461.591.631.621.461.681.57
Nd6.126.335.876.326.466.496.036.786.44
Sm1.251.401.391.461.431.541.371.681.50
Eu0.400.370.420.520.440.470.400.410.47
Gd1.231.101.211.191.251.281.101.271.25
Tb0.180.170.160.180.180.180.150.180.17
Dy0.890.900.860.920.961.030.801.040.99
Ho0.180.150.160.180.180.170.150.180.16
Er0.450.450.380.480.480.470.390.470.47
Tm0.060.060.060.070.070.070.060.070.06
Yb0.400.380.390.450.470.450.380.490.43
Lu0.060.060.060.070.080.070.050.070.07
∑REE29.930.128.931.632.032.028.732.931.5
δEu0.910.830.890.970.900.900.870.790.91
(La/Yb)N9.069.899.248.708.558.699.258.038.86

新窗口打开| 下载CSV


图5

图5   SiO2-K2O图解(a)(底图据Peccerillo et al.,1976)和A/NK-A/CNK图解(b)(底图据Maniar et al.,1989

Fig.5   SiO2-K2O diagram(a)(base map after Peccerillo et al.,1976) and A/NK-A/CNK diagram(b)(base map after Maniar et al.,1989


榆树沟矿区花岗闪长斑岩稀土元素总量在28.7×10-6~32.9×10-6之间,平均值为30.8×10-6;LREE/HREE比值为7.60~8.30,(La/Yb)N为8.03~9.89,δEu值为0.79~0.97,反映轻稀土富集,弱负铕—无铕异常特征[图6(a)]。在微量元素蛛网图[图6(b)]上,表现出Rb、Ba、Sr、Th和U等元素强烈富集,以及Nb、Ta和重稀土元素Y、Yb亏损的特征。

图6

图6   榆树沟山金矿花岗闪长斑岩稀土元素球粒陨石标准化配分模式(a)(底图据Boynton et al.,1984)和微量元素原始地幔标准化蛛网图(b)(底图据Sun et al.,1989

Fig.6   Chondrite normalized REE patterns(a)(base map after Boynton et al.,1984)and trace elements primitive mantle-normalized spider diagrams(b)(base map after Sun et al.,1989)of granodiorite porphyry in Yushugoushan gold deposit


4 讨论

4.1 成岩年龄

本研究选择的花岗闪长斑岩广泛发育在榆树沟山矿区的金矿化蚀变带及其附近,二者呈侵入接触关系,外接触带见斑点板岩等热接触变质岩石。前人未曾对花岗岩脉进行测年研究,根据侵入地层大致确定其形成时代为加里东晚期。笔者首次获得的花岗闪长斑岩LA-ICP-MS U-Pb年龄为(423.5±3.5)~(422.8 ± 3.4)Ma,侵位时代为晚志留世。

榆树沟山矿区花岗闪长斑岩的侵位与北祁连西段车路沟金矿区含矿斑岩时代接近,如:张翔等(2023)获得车路沟含矿斑岩体侵位时代为(438.8±3.3)~(433.0±3.8)Ma,宋忠宝等(2005)测得车路沟岩体锆石U-Pb年龄为(427.7±4.5)Ma。表明加里东末期中酸性岩浆活动较强烈,且在北祁连西段金成矿作用过程中扮演着重要的角色。

4.2 岩浆源区

锆石原位Lu-Hf同位素组成常用来示踪岩浆源区和揭示地壳演化(Griffin et al.,2004)。通过对榆树沟山矿区花岗闪长斑岩2YTW-1样品的锆石开展Hf同位素研究,得出岩石中15粒结晶锆石 176Hf/177Hf初始值较高(0.282733~0.282830),对应年龄为415~430 Ma,εHft)均为正值(+7.50~+11.0),二阶段模式年龄(TDM2)为0.86~0.67 Ga,显示岩石源区应来源于新元古代新生地壳的部分熔融(Geng et al.,2017郭小飞等,2022)。此外,岩石中存在7粒继承性锆石(核),形成时代可划分为2 377 Ma、1 398~1 094 Ma、961~802 Ma和433~439 Ma共4个时段,有3粒锆石(1-05、1-11和1-21)εHft)值为正值(+9.72~+19.55),二阶段模式年龄(TDM2)在2 317~980 Ma之间,有4粒锆石(1-06、1-12、1-13和1-18)εHft)值为负值(-7.59~-2.24),二阶段模式年龄(TDM2)在2 027~1 420 Ma之间,表明岩石在形成和侵位过程中有古元古代、中元古代新生地壳物质和成熟地壳物质混入(孙建东等,2022)。此外,在图7中显示,绝大多数样点集中在亏损地幔演化线附近,个别在下地壳附近,也表明岩浆源区总体源自亏损地幔的新生壳源物质,但也有少量古老壳源物质的混合。

图7

图7   榆树沟山金矿花岗闪长斑岩锆石年龄—εHft)图解(a)和锆石年龄—176Hf/177Hf图解(b)

Fig.7   Zircon age-εHft) diagram(a) and zircon age-176Hf/177Hf diagram(b) of granodiorite porphyry in Yushugoushan gold deposit


综上所述,榆树沟山矿区花岗闪长斑岩起源于新元古代新生地壳物质部分熔融,在岩浆上侵过程中混入了古元古代和中元古代成熟地壳物质。

4.3 岩石成因及动力学背景

榆树沟山金矿区花岗闪长斑岩属于钙碱性弱过铝质花岗岩系列,具有相对较高的SiO2含量(64.9%~67.9%)和Al2O3含量(15.7%~17.2%),低MgO含量(0.91%~1.43%);微量元素中Sr含量相对较高(289×10-6~486×10-6),重稀土元素Y和Yb含量相对较低(分别为4.11×10-6~5.48×10-6和0.38×10-6~0.49×10-6),具有较高Sr/Y比值(65.1~95.3)特征,与典型埃达克岩岩石地球化学特征相似,且在鉴别埃达克岩图解[图8(a)、8(b)]中,均落入埃达克岩区域。

图8

图8   榆树沟山矿区花岗闪长斑Sr/Y-Y图解(a)和(La/Yb)N-YbN图解(b)(底图据Defant et al.,1990

Fig.8   Sr/Y-Y diagram(a) and (La/Yb)N-YbN diagram(b) of granodiorite porphyry in Yushugoushan gold deposit (base map after Defant et al.,1990


研究表明,北祁连地区埃达克岩主要形成于2个时期:早期形成于晚奥陶—早志留世(465~440 Ma),与同碰撞造山作用有关;晚期形成于中—晚志留世(431~424 Ma),与碰撞后伸展作用有关(黄增保等,2018)。榆树沟山金矿区位于北祁连西段,区内花岗闪长斑岩侵位于晚志留世(423.5~422.8 Ma),应属于北祁连地区晚期埃达克岩体范畴。结合岩石结晶锆石Hf同位素特征和区域构造演化,初步认为榆树沟山矿区花岗闪长斑岩为祁连造山带晚志留世碰撞后伸展阶段的产物,强烈的伸展作用诱发该地区新元古代新生洋壳发生部分熔融,形成具有埃达克质岩地球化学特征的岩浆,并沿断裂带上侵形成现今的花岗闪长斑岩体。

5 结论

(1)榆树沟山金矿区花岗闪长斑岩LA-ICP MS锆石U-Pb年龄为(423.5±3.5)~(422.8±3.4)Ma,侵位于晚志留世。

(2)榆树沟山金矿区花岗闪长斑岩属于钙碱性过铝质花岗岩系列岩石,具有低Y和Yb含量,以及高Sr和Sr/Y比值的地球化学特征,属于埃达克质岩。

(3)榆树沟山金矿区花岗闪长斑岩锆石εHft)值为+7.50~+11.0,TDM2(Hf)值为0.86~0.67 Ga,岩浆起源于具洋壳性质的新元古代新生地壳物质的部分熔融。

(4)结合区域构造演化,初步认为榆树沟山金矿区花岗闪长斑岩形成于祁连造山带碰撞后伸展阶段,志留纪末强烈的陆内伸展作用诱发新元古代新生地壳物质发生部分熔融,形成具有埃达克质岩地球化学特征的岩浆,并沿断裂带上侵形成了现今的花岗闪长斑岩体。

http://www.goldsci.ac.cn/article/2024/1005-2518/1005-2518-2024-32-3-387.shtml

参考文献

Boynton W VBowden P1984.

Geochemistry of the rare earth elements:Meteorite study

[C]//Hendrson P.Rare Earth Element Geochemistry. AmsterdamElsevier: 63-114.

[本文引用: 2]

Defant M JDrummond M S1990.

Derivution of some modern arc magmas by melting of young subduction lithosphere

[J].Nature,347662-665.

[本文引用: 2]

Fan XinxiangKong WeiqiongYang Zhenxial et2019.

Geological characteristics,metallogenic age and genesis analysis of Niumaoquandong gold deposit in western Qilian Mountains

[J].Geoscience,332):251-261.

Fan XinxiangKong WeiqiongYang Zhenxiet al2020.

U-Pb chronology,geochemical characteristics and petrogenesis of the Chelugou pluton in the western part of North Qilian orogenic belt

[J].Geology in China,473):755-766.

Geng J ZQiu K FGou Z Y2017.

Tectonic regime switchover of Triassic Western Qinling Orogen:Constraints from LA-ICP-MS zircon U-Pb geochronology and Lu-Hf isotope of Dangchuan intrusive complex in Gansu,China

[J].Geochemistry,774):637-651.

[本文引用: 1]

Griffin W LBelousova E AShee S Ret al2004.

Archean crustal evolution in the northern Yilgarn Craton:U-Pb and Hf-isotope evidence from detrital zircons

[J].Precambrian Research,131231-282

[本文引用: 2]

Guo XiaofeiWang QinglongJing Yihonget al2022.

Zircon U-Pb geochronology and Hf isotope characteristics of the Xihuashan granites in southern Jiangxi Province and their geological signifince

[J].Geology and Exploration,583):585-596.

Hoskin P W OBlack L P2000.

Metamorphic zircon formation by solid-state recry-stallization of protolith igneous zircon

[J].Journal of Metamorphic Geology,18423- 439.

[本文引用: 1]

Hu Z CLiu Y SGao Set al2012.

Improved in situ Hf isotope ratio analysis of zircon using newly designed X skimmer cone and jet sample cone in combination with the addition of nitrogen by laser ablation multiple collector ICP-MS

[J].Journal of Analytical Atomic Spectrometry,279):1391-1399.

[本文引用: 1]

Huang ZengbaoZheng JianpingLi Baohuaet al2018.

U-Pb ages,Hf isotopic composition and geochemistry of alkaline complex from the Ganshaebo REE deposit in North Qilian Mountains,China

[J].Acta Geology Sinica,9212):315-320.

Liang BeishanSong Xiaojun2011.

Enrichment characteristics of gold in Changma gold deposit,Yumen

[J].Gansu Geology,201):57-61.

Li ShengdongLi DaminYang Yongchun2020.

Ore-controlling structure and enrichment law of the Hanshan gold deposit in the western section of the north Qilian Mountains

[J].Geology and Exploration,564):675-687.

Liu Y SHu Z CGao Set al2008.

In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard

[J].Chemical Geology,2571/2):34-43.

[本文引用: 1]

Liu YanliangGao YaWei Jindong2021.

A discussion of prospecting direction for the Chelugoubei gold deposit in Gansu Province:The distinctiveness from contrast analysis of the geological conditions of‘Golden Triangle’ gold deposits in the eastern segment of Altyn fault shearing zones

[J].Bulletin of Geological Science and Technology,405):198-209.

Liu YongbiaoYu JunpengKong Weiqionget al2020.

A study of ore-forming epoch of Hanshan deposit in western North Qilian Mountain

[J].Mineral Deposits,391):135-146.

Ludwig K R2003.ISOPLOT 3.00

A Geochronological Toolkit for Microsoft Excel

[M].BerkeleyBerkeley Geochronology Center.

[本文引用: 1]

Maniar P DPiccoli P M1989.

Tectonic discrimination of granitoids

[J].Geological Society of America Bulletin,101635-643.

[本文引用: 2]

Mao JingwenYang JianminZhang Zhaochonget al1998.

Geology,geochemistry and genesis of the Hanshan shear zone type gold deposit in Gansu

[J].Deposit Geology,(1):2-14.

Peccerillo ATaylor S R1976.

Geochemistry of eocene calc-alkaline volcanic rocks from the Kastamonu area,Northern Turkey

[J].Contributions to Mineralogy Petrology,5863-81.

[本文引用: 2]

Song S GNiu Y LSu Let al2013.

Tectonics of the North Qilian orogen,NW China

[J].Gondwana Research,234):1378-1401.

[本文引用: 1]

Song ZhongbaoLi ZhipeiRen Youxianget al2005.

Geochronology and geological significance of the Chelugou dacite porphyry in North Qilian Mountains

[J].Geotechnical Information,243):15-19.

Sun JiananYin GaokeDong Shuanqunet al2019.

Genetic analysis of middle and low temperature hydrothermal gold deposits in the western section of North Qilian

[J].China Resources Comprehensive Utilization,372):66-68.

Sun JiandongLi HailiLu Fanet al2022.

Geochemistry,zircon U-Pb ages,and Hf isotopes of the Mengshan rock mass in western Jiangxi Province and their geologic implication

[J].Geology and Exploration,581):96-106.

Sun S SMcDonough W F1989.

Chemical and isotope systematic of oceanic basalts:Implication for the mantle composition and process

[C]//Saunder A D,Norry M J.Magmatism in the Ocean Basins.Geological Society421):313-345.

[本文引用: 2]

Wang YangLiu Xiaobo2020.

Geological characteristics and prospecting of Yushugoushan gold deposit

[J].Gansu Geology,293/4):67-73.

[本文引用: 2]

Yan Maoqiang2024.

Tectono-Magmatic Evolution and Gold Mineralization in Western North Qilian Orogen

[D].WuhanChina University of Geosciences.

Yang JianguoMa ZhongpingRen Youxianget al2002.

The geological features and genetic pattern of Te-Au deposit related to porphyry in North Qilian Mountains

[J].North Western Geology,352):24-34 .

Yang JianguoYang LinhaiRen Youxianget al2005.

Isotopic geochronology of the ore-forming process in the Hanshan gold deposit of the North Qilian Mountains

[J].Acta Geoscientica Sinica,264):315-320 .

Yang Xingji1999.

Geological characteristics of tectonoaltered rock-type gold deposit occurred in Hanshan shear zone in Anxi County

[J].Acta Geologica Gansu,81):42-48.

Ye DejinZhang ZuohengZhao Yanqing2003.

Ore-controlling factors and genesis of the Yingzuishan altered cataclastic rock type gold deposit in the western segment of North Qilian

[J].Acta Geoscientica Sinica,244):311-318.

Zhang XiangHuang ZengbaoLiu Ziruiet al2023.

Geochronology,geochemical characteristics and genesis of Chelugou gold deposit ore-bearing porphyry in the North Qilian orogenic belt

[J].Acta Petrologica Sinica,392):499-514.

樊新祥孔维琼杨镇熙2019.

北祁连西段牛毛泉东金矿地质特征、成矿时代及成因分析

[J].现代地质,332):251-261.

[本文引用: 1]

樊新祥孔维琼杨镇熙2020.

北祁连造山带西段车路沟岩体 U-Pb 年代学、地球化学特征及岩石成因

[J].中国地质,473):755-766.

[本文引用: 1]

郭小飞王庆龙荆一洪2022.

赣南西华山成矿花岗岩锆石U-Pb年代学和Hf同位素特征及其地质意义

[J].地质与勘探,583):585-596.

[本文引用: 1]

黄增保郑建平李葆华2018.

北祁连干沙鄂博矿区碱性岩锆石U-Pb年龄、Hf同位素及岩石地球化学特征

[J].地质学报,9212):315-320.

[本文引用: 1]

李生栋李大民杨永春2020.

北祁连西段寒山金矿控矿构造及富集规律

[J].地质与勘探,564):675-687.

[本文引用: 1]

梁北山宋小军2011.

玉门昌马金矿金的富集特征

[J].甘肃地质,201):57-61.

[本文引用: 1]

刘彦良高雅魏金栋2021.

甘肃省车路沟北金矿找矿方向探讨:来自阿尔金断裂带东段“金三角”金矿控矿因素对比研究的启迪

[J].地质科技通报,405):198-209.

[本文引用: 1]

刘永彪余君鹏孔维琼2020.

北祁连山西段寒山金矿床成矿时代探讨

[J].矿床地质,391):135-146.

[本文引用: 1]

毛景文杨建民张招崇1998.

甘肃寒山剪切带型金矿床地质、地球化学和成因

[J].矿床地质,(1):2-14.

[本文引用: 2]

宋忠宝李智佩任有祥2005.

北祁连山车路沟英安斑岩的年代学及地质意义

[J].地质科技情报,243):15-19.

[本文引用: 1]

孙佳楠尹高科董栓群2019.

北祁连西段中低温热液型金矿成因分析

[J].中国资源综合利用,372):66-68.

[本文引用: 1]

孙建东李海立陆凡2022.

赣西蒙山岩体地球化学特征、锆石U-Pb 年龄、Hf同位素特征及地质意义

[J].地质与勘探,581):96-106.

[本文引用: 1]

王洋刘晓波2020.

榆树沟山地区金矿地质特征及找矿标志

[J].甘肃地质,293/4):67-73.

[本文引用: 3]

闫茂强2024.

北祁连西段构造岩浆演化与金成矿

[D].武汉中国地质大学.

[本文引用: 1]

杨建国马中平任有祥2002.

北祁连山与斑岩有关的碲金型金矿床地质特征和成因模型

[J].西北地质,352):24-33.

[本文引用: 3]

杨建国杨林海任有祥2005.

北祁连山寒山金矿床成矿作用同位素地质年代学

[J].地球学报,264):315-320.

[本文引用: 1]

杨兴吉1999.

安西县寒山剪切带构造蚀变岩型金矿床地质特征

[J].甘肃地质,81):42-48.

[本文引用: 2]

叶得金张作衡赵彦庆2003.

北祁连西段鹰咀山蚀变碎裂岩型金矿床控矿因素和成因

[J].地球学报,244):311-318.

[本文引用: 2]

张翔黄增保刘子锐2023.

北祁连车路沟斑岩型金矿床含矿岩体年代学、地球化学与岩石成因

[J].岩石学报,392):499-514.

[本文引用: 3]

/