融合全监督学习的半监督矿石粒度预测算法
姜志宏,陈澳

Semi-supervised Ore Granularity Prediction Algorithm Incorporating Fully Supervised Learning
Zhihong JIANG,Ao CHEN
表2 各模型的最佳超参数及预测误差
Table 2 Optimal hyperparameters and prediction errors for each model
模型最佳超参数RMSEMAE
Treemax_depth = 40.0300.026
RFn_estimators = 200.0400.027
GBDT

learning_rate = 0.01

max_depth = 5

n_estimators = 200

0.0260.022
XGBoost

gamma = 0.0

max_depth = 4

min_child_weight = 4

n_estimators = 70

0.0400.028
Bayes

alpha_1= 1e-08

alpha_2= 1e-06

lambda_1= 1e-06

lambda_2= 1e-08

n_iter= 100

0.0290.022
多项式回归

Linearregression_fit

_intercept= True

polynomialfeatures_degree2

0.0800.051
岭回归

Alpha = 0.3

gamma = 0.1

kernel = linear

0.0300.023
SVM

C = 1.0

Gamma = 1.0

Kernel = linear

0.0750.063
BP神经网络

Activation = relu

Alpha = 0.0001

hidden_layer_sizes = (100,)

0.0300.023