img

QQ群聊

img

官方微信

  • CN 62-1112/TF 
  • ISSN 1005-2518 
  • 创刊于1988年
高级检索

黄金科学技术, 2024, 32(5): 813-829 doi: 10.11872/j.issn.1005-518.2024.05.164

特约专栏

胶东三山岛金矿床巨斑花岗岩的形成时代、成因及对金成矿的启示

周晓萍,1,2, 宋明春,3, 刘向东1, 闫春明1, 胡兆君1, 苏海岗1, 胡秉谦1, 周宜康1

1.山东省地质矿产勘查开发局第六地质大队,山东 威海 264209

2.山东省地质矿产勘查开发局第三地质大队,山东 烟台 264000

3.河北省战略性关键矿产资源重点实验室,河北地质大学地球科学学院,河北 石家庄 050031

Formation Age,Petrogenesis,and Implications for Gold Mineralization of Giant Porphyritic Granite in the Sanshandao Gold Deposit in Jiaodong

ZHOU Xiaoping,1,2, SONG Mingchun,3, LIU Xiangdong1, YAN Chunming1, HU Zhaojun1, SU Haigang1, HU Bingqian1, ZHOU Yikang1

1.No. 6 Geological Team of Shandong Province Bureau of Geology and Mineral Resources, Weihai 264209, Shan-dong, China

2.No. 3 Geological Team of Shandong Province Bureau of Geology and Mineral Resources, Yantai 264000, Shan-dong, China

3.Hebei Key Laboratory of Strategic Critical Mineral Resources, College of Earth Sciences, Hebei GEO University, Shijiazhuang 050031, Hebei, China

通讯作者: 宋明春(1963-),男,山东莱阳人,教授,从事矿产勘查、区域地质调查及相关研究工作。mingchuns@163.com

收稿日期: 2024-06-04   修回日期: 2024-07-25  

基金资助: 国家自然科学基金NSFC-山东省联合基金项目“胶东深部金矿断裂控矿机理”.  U2006201
河北省全职引进国家高层次创新型人才科研项目“冀北地区金成矿系统及深部找矿技术”.  2023HBQZYCSB010
山东省地质矿产勘查开发局科技攻关项目“胶西北断裂系统及其与金成矿关系”.  KY202208

Received: 2024-06-04   Revised: 2024-07-25  

作者简介 About authors

周晓萍(1989-),女,山东龙口人,工程师,从事岩石学和矿床学方面的研究工作sddkzxp@126.com , E-mail:sddkzxp@126.com

摘要

胶东地区三山岛金矿床的主要赋矿围岩是中生代玲珑花岗岩和郭家岭花岗岩。通过对三山岛巨斑花岗岩进行岩相学、岩石地球化学和锆石U-Pb同位素年代学等研究,分析其地球化学类型、形成时代、岩浆源区及成因,讨论了成岩与成矿的关系。岩石地球化学特征表明:三山岛巨斑花岗岩的SiO2、Al2O3和全碱(Na2O+K2O)含量较高;铝饱和指数A/CNK为1.34,属过铝质—钙碱性系列岩石;稀土元素含量较低,轻稀土相对富集,重稀土相对亏损;岩石富集Rb、Sr、和Ba等大离子亲石元素,亏损Ta、Nb、P和Ti等高场强元素;岩石地球化学特征与富钠花岗岩和年轻的TTG(<3 Ga)相似。巨斑花岗岩的锆石U-Pb加权平均年龄为(127.05±0.41) Ma,属于早白垩世郭家岭期花岗岩。岩石中金丰度值较早前寒武纪变质岩系明显降低。综合研究认为,巨斑花岗岩是下地壳酸性岩浆与少量幔源基性岩浆混合作用的结果,形成于太平洋板块俯冲和华北克拉通破坏背景下的伸展构造环境,岩体中的钾长石巨晶是岩浆期后钾化作用的结果;具有较高背景金丰度的早前寒武纪变质基底岩石部分熔融过程中,地球化学元素重新调整,金质被活化、迁移,形成富金流体库,并产生贫金花岗岩;花岗岩快速侵位和地壳强烈隆升产生的拆离断层系统,以及钾化作用导致岩石体积膨胀而破裂,为成矿流体聚集和矿化富集提供了良好的物理圈闭空间。

关键词: 三山岛金矿 ; 巨斑花岗岩 ; 岩石地球化学 ; 锆石U-Pb年代学 ; 郭家岭期花岗岩

Abstract

The primary host rocks of the Sanshandao gold deposit in the Jiaodong region are the Mesozoic Linglong granite and Guojialing granite.Through the application of petrographic analysis,geochemical assays,and zircon U-Pb geochronology,the geochemical classifications,formation ages,magma source regions,and petrogenesis of the granite were investigated.Additionally,the relationship between diagenesis and mineralization was examined.The geochemical characteristics of the rocks reveal a relatively high content of SiO2,Al2O3,and total alkali (Na2O+K2O).The aluminum saturation index (A/CNK) is 1.34,classifying these rocks within the Peraluminous-Calcium alkaline series.The concentration of rare earth elements (REE) is relatively low,with a relative enrichment of light rare earth elements (LREE) and a deficiency in heavy rare earth elements (HREE).The rocks are enriched in large-ion lithophile elements (LILE) such as Rb,Sr,and Ba,while high field strength elements (HSFE) such as Ta,Nb,P,and Ti are notably deficient.The geochemical characteristics of the Sanshandao giant porphyritic granite are comparable to those of sodium-rich granites and young tonalite-trondhjemite-granodiorite (TTG) complexes (younger than 3 Ga).The zircon U-Pb weighted average age of the giant porphyritic granite is determined to be(127.05±0.41)Ma,corresponding to the early Cretaceous Guojialing period granite.The gold concentration in the giant porphyritic granite is markedly lower compared to that in early Precambrian metamorphic rocks.Integrating these findings with prior research,it is inferred that the giant porphyritic granite predominantly comprises lower crustal acidic magma,with a minor contribution from mantle-derived basic magma,formed through magmatic mixing.The formation of the rock occurred within an extensional tectonic environment characterized by the subduction of the Pacific Plate and the destruction of the North China Craton.The presence of large feldspar crystals within the rock can be attributed to post-magmatic potassium mineralization.Additionally,Early Precambrian metamorphic rocks,which exhibit relatively high background values of gold abundance,undergo partial melting.During this process,geochemical elements are redistributed,leading to the activation and migration of gold,which results in the formation of a gold-rich fluid reservoir and the subsequent production of gold-poor granite.The rapid intrusion of granite,coupled with the detachment fault system induced by significant crustal uplift and potassium mineralization,collectively contributed to the initial expansion and subsequent rupture of rock volume.This process created an optimal physical trap space conducive to the accumulation and enrichment of ore-forming fluids.

Keywords: Sanshandao gold deposit ; giant porphyritic granite ; geochemistry ; zircon U-Pb geochronology ; Guojialing period granite

PDF (8357KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

周晓萍, 宋明春, 刘向东, 闫春明, 胡兆君, 苏海岗, 胡秉谦, 周宜康. 胶东三山岛金矿床巨斑花岗岩的形成时代、成因及对金成矿的启示[J]. 黄金科学技术, 2024, 32(5): 813-829 doi:10.11872/j.issn.1005-518.2024.05.164

ZHOU Xiaoping, SONG Mingchun, LIU Xiangdong, YAN Chunming, HU Zhaojun, SU Haigang, HU Bingqian, ZHOU Yikang. Formation Age,Petrogenesis,and Implications for Gold Mineralization of Giant Porphyritic Granite in the Sanshandao Gold Deposit in Jiaodong[J]. Gold Science and Technology, 2024, 32(5): 813-829 doi:10.11872/j.issn.1005-518.2024.05.164

胶东金成矿区是我国最重要的金矿资源产地,累计查明金矿资源量近6 000 t,其中莱州三山岛、西岭和北部海域等勘查区累计查明金金属量超过1 200 t,三者实际构成同一个千吨级超巨型金矿床(Song et al.,20212023)。与胶西北大部分金矿的赋矿围岩一致,三山岛金矿床的主要赋矿围岩是中生代玲珑花岗岩和郭家岭花岗岩。前人对胶东金矿化与中生代岩浆岩的关系开展了大量研究。鉴于大量金矿直接赋存于玲珑花岗岩和郭家岭花岗岩中,诸多学者认为它们是金矿成矿的直接矿源岩(李士先等,2007),部分学者认为郭家岭花岗岩与金矿成矿关系更为密切(Wang et al.,1998罗贤冬等,2014)。前人研究表明,玲珑花岗岩侵位年龄范围为140~164 Ma(胡世玲等,1987徐洪林等,1997苗来成等,1998Wang et al.,1998Hu et al.,2004郭敬辉等,2005Zhang et al.,2010王世进等,2011Yang et al.,2012Ma et al.,2013),主要源自华北克拉通地壳的部分熔融(Hu et al.,2012Yang et al.,2012王立功等,2018)。郭家岭花岗岩于125~130 Ma(关康等,1998Yang et al.,2012罗贤冬等,2014)侵位于玲珑花岗岩、太古宙变质岩及其接触带附近。

本次研究采集的样品位于三山岛村北零星出露的基岩残丘,该岩体原被划归为玲珑序列,近年来虽陆续有研究报道(王立功等,2018王建等,2020),但对其形成构造环境及其与金成矿的关系尚缺乏系统的分析。作为金矿直接的赋矿围岩,该岩体具有重要的研究价值。本次采用岩相学、岩石地球化学和同位素年代学等研究方法,旨在揭示其岩浆源区及成因类型、构造环境、形成时代及与金成矿的关系。

1 区域地质背景

三山岛巨型金矿床位于胶东半岛西北部,大地构造位置处于胶北隆起西缘,西邻郯庐断裂带。矿床所在区域由前寒武纪变质基底岩系和中、新生代地质体组成,前者主要包括新太古代TTG质花岗岩类和胶东岩群、古元古代荆山群和粉子山群;后者主要为中生代柳林庄序列、玲珑序列、郭家岭序列、伟德山序列和雨山序列等侵入岩类(图1),有少量白垩纪陆相火山—沉积地层和第四纪沉积物。区内NE-NNW走向断裂发育,其中三山岛、焦家和招平断裂是胶东地区的主要控矿断裂,控制着胶东地区多数大型金矿床。

图1

图1   郭家岭花岗岩(a)和三山岛巨斑花岗岩(b)地质分布图

1.第四系;2.白垩系;3.古元古界;4.新太古界;5.中生代雨山序列;6.中生代伟德山序列;7.中生代郭家岭序列;8.中生代玲珑序列;9.中生代柳林庄序列;10.含金蚀变带;11.地质界线;12.实测及推测断裂;13.金矿体

Fig.1   Geological distribution map of Guojialing granite (a) and Sanshandao giant porphyritic granite (b)


三山岛断裂位于胶东半岛的最西部,莱州湾的东岸,是三山岛金矿的控矿断裂,大部分被第四系覆盖。断裂发育连续且稳定的主裂面,呈舒缓波状展布(钟伶志等,2022)。三山岛岩体位于三山岛断裂下盘(西侧),呈小岩株状产出,大部分被第四系覆盖,该岩体是三山岛金矿的直接赋矿围岩,岩性为巨斑二长花岗岩。该岩体与仓上岩体、上庄岩体、北截岩体、丛家岩体、曲家岩体、范家店岩体和郭家岭岩体共同构成郭家岭序列花岗岩(图1),

2 岩相学特征

三山岛花岗岩体出露于三山岛村北300 m处的临海小山包的顶部,以含有巨大钾长石斑晶(1~5 cm)的似斑状结构为特征。岩石新鲜面呈灰白—浅灰白色,基质为中粒花岗结构,块状构造。斑晶主要为钾长石,呈他形—半自形椭圆粒状[图2(a)],含量10%~15%;基质成分主要为斜长石(45%~50%)、石英(20%~25%)、钾长石(10%~15%)和白云母(10%~15%)。副矿物有榍石、磷灰石、锆石和褐帘石等。其中,石英呈他形粒状;斜长石多呈半自形板状,绢云母化、白云母化和泥化蚀变明显;钾长石为微斜长石和条纹长石,多呈他形粒状分布,表面较脏,土化明显,部分晶体包含斜长石和石英等矿物颗粒,形成包含结构[图2(b)、2(c)];白云母为原岩弱绢英岩化的产物[图2(d)],常呈放射性集合体产出,原岩中的黑云母已全部被白云母或绢云母替代,呈交代假象结构。岩石局部变形碎裂,沿裂隙充填有石英和绢云母等细小矿物,形成碎裂结构。

图2

图2   三山岛巨斑花岗岩野外及显微镜下特征

(a)巨斑花岗岩野外照片;(b)、(c)钾长石斑晶包含结构;(d)弱绢英岩化蚀变Q-石英;Pl-斜长石;Kfs-钾长石;Mc-微斜长石;Ms-白云母;Ser-绢云母

Fig.2   Field and microscopic characteristics of Sanshandao giant porphyritic granite


3 样品采集与分析方法

本次研究样品采集自莱州市三山岛村北300 m处的基岩残丘,对采集的样品分别进行了岩相学、岩石地球化学和锆石U-Pb年代学分析测试。

岩石地球化学测试分析工作在广州市拓岩检测技术有限公司完成。主量元素分析利用日本理学 PrimusⅡX射线荧光光谱仪(XRF)完成,采用等离子光谱和化学法测定;微量元素测定利用赛默飞iCAP RQ完成。贵金属Au元素丰度值通过火试法测定。地球化学各元素检出限符合国家标准和行业标准。

锆石单矿物的挑选、制靶、锆石U-Pb同位素测年和微量元素含量测试工作均在广州市拓岩检测技术有限公司完成,采用New Wave Research193nm ArF准分子激光剥蚀系统,与Thermo Scientific iCap-RQ 四极杆型电感耦合等离子体质谱仪(ICP-MS)联用。准分子激光发生器产生的深紫外光束经匀化光路聚焦于锆石表面,激光束斑直径为30 µm,频率为6 Hz,能量密度为3.5 J/cm2。激光剥蚀过程中采用氦气作载气、氩气为补偿气以调节灵敏度。年龄采用国际标准锆石91500作为外标,元素含量采用NIST SRM 610作为外标,以Si作为内标元素标定锆石中的Pb元素含量,以Zr作为内标元素标定锆石中其余微量元素含量;以标准锆石Plešovice和Tan-Z作为监控样,用以评估U-Pb定年数据质量。原始的测试数据利用iolite4软件进行处理,谐和图、年龄分布频率图绘制、年龄权重分布图及加权平均年龄计算采用IsoplotR(Vermeesch,2018)和Isoplot3.0(Ludwig,2003)程序完成。

4 测试结果

4.1 岩石地球化学特征

岩石地球化学成分分析结果(表1)显示,三山岛巨斑花岗岩中SiO2含量为73.83%,在TAS图解中数据点落入花岗岩区域[图3(a)]。Al2O3含量为15.14%,TFe2O3含量为0.82%,MgO含量为0.32%,Mg#值为44,P2O5和TiO2含量分别为0.16%和0.04%,含量较低。铝饱和指数A/CNK为1.34,在A/CNK-A/NK图解[图3(b)]中落入过铝质岩石区域;全碱含量(Na2O+K2O)为7.71%,里特曼指数σ=1.93,在SiO2-K2O图解[图3(c)]中落入钙碱性系列区域;Na2O/K2O比值为1.78,具有富钠、贫钾的特点。相比而言,三山岛花岗岩位于郭家岭花岗岩投点范围内酸性、A/CNK值较高且K2O含量较低的部分(图3)。

表1   三山岛巨斑花岗岩主量元素(%)、微量元素(×10-6)及金丰度(10-9)分析结果

Table 1  Analysis result of major elements(%),trace elements(×10-6) and gold abundances(×10-9) of Sanshandao giant porphyritic granite

样品编号SiO2TiO2Al2O3TFe2O3MnOMgOCaONa2OK2OP2O5烧失量总量σMg#A/CNKA/NK
GJL73.830.1615.140.820.020.320.084.932.780.041.2599.371.93441.341.36
样品编号LaCePrNdSmEuGdTbDyHoErTmYbLuRbBa
GJL9.3716.061.876.701.190.320.800.100.460.080.210.030.200.03101.59410.18
样品编号ThNbTaPbSrNdSmHfTiYYbΣREEδEuδCe(La/Yb)NAu
GJL2.242.910.192.16108.926.701.193.21932.042.830.2037.410.940.8932.030.410

新窗口打开| 下载CSV


图3

图3   三山岛巨斑花岗岩TAS图解(a)、A/CNK-A/NK图解(b)和SiO2-K2O图解(c)

注:郭家岭花岗岩数据引自文献(罗贤冬等,2014陈广俊等,2014王立功等,2018王斌等,2021

Fig.3   TAS(a)、A/CNK-A/NK(b) and SiO2-K2O(c) diagram of Sanshandao giant porphyritic granite


在Harker图解(图4)中,郭家岭花岗岩岩石中主量元素氧化物TFe2O3、MgO、Al2O3、CaO、P2O5、TiO2与SiO2含量呈负相关关系,可能与长石、铁镁矿物、钛铁氧化物及磷灰石的分异结晶有关。其中,三山岛巨斑花岗岩中的TFe2O3、MgO、P2O5和TiO2含量较其他郭家岭花岗岩明显降低,与显微镜下观察到的角闪石和黑云母等暗色矿物含量极少一致。

图4

图4   郭家岭花岗岩主量元素与SiO2协变图(Harker图解)

注:郭家岭花岗岩数据引自文献(罗贤冬等,2014陈广俊等,2014王立功等,2018王斌等,2021

Fig.4   Covariation diagram of major elements and SiO2 in Guojialing granite (Harker diagram)


三山岛巨斑花岗岩岩石稀土元素含量较低,低于其他郭家岭花岗岩的稀土总量,ΣREE为37.41×10-6,LREE/HREE比值为18.56,(La/Yb)N比值为32.03,表现为轻、重稀土元素分异明显;δCe值为0.89,δEu值为0.94,显示弱负铈、负铕异常。从球粒陨石标准化稀土元素配分图[图5(a)]可以看出,样品轻稀土富集,重稀土亏损,配分曲线呈右倾特征。原始地幔标准化微量元素蛛网图[图5(b)]显示,岩石显示富集Rb、Sr和Ba等大离子亲石元素(LILE),亏损Ta、Nb、P和Ti等高场强元素(HSFE),与其他郭家岭花岗岩具有很好的一致性,指示岩浆活动受大陆地壳影响。

图5

图5   三山岛巨斑花岗岩稀土元素配分模式图(a)和微量元素蛛网图(b)

注:埃达克岩、TTG及富钠花岗岩数据引自杨进辉等(2003);郭家岭花岗岩数据引自文献(罗贤冬等,2014陈广俊等,2014王立功等,2018王斌等,2021

Fig.5   REE patterns (a) and trace element spider diagrams(b) of Sanshandao giant porphyritic granite


4.2 锆石年代学特征

(1)锆石形态及CL结构

锆石CL图像(图6)显示,样品锆石呈短柱—长柱状,粒径为130~280 μm,长宽比为2∶1~3∶1。按锆石形态及结构特征,可划分为3组。第1组(22粒)锆石具清晰岩浆振荡环带,Th含量介于55×10-6~370×10-6(平均值为159×10-6)、U含量介于170×10-6~1 140×10-6(平均值为464×10-6)、Th/U比值介于0.2~0.6(平均值为0.3);第2组(3粒;JD21P1B21-6、8、14)锆石呈较完整的短柱状,具有简单核边结构,核部具弱分带特征且CL图像颜色较浅,边部呈暗黑色,Th(平均含量为18×10-6)、U(平均含量为134×10-6)含量相对偏低,Th/U比值平均为0.1,判断该组锆石可能受到变质作用的影响;第3组(3粒;JD21-P1B21-13、15、29)锆石晶体长度短、外部磨圆度高、裂隙发育且核部无明显成分韵律分带,这些锆石年龄较老,为前寒武纪变质结晶基底的继承锆石。

图6

图6   三山岛巨斑花岗岩锆石CL图像

Fig.6   Zircon CL images of Sanshandao giant porphyritic granite


(2)锆石微量元素

锆石稀土元素配分模式图[图7(a)]显示,多数样品配分曲线呈亏损LREE元素,富集HREE元素,同时具明显的正Ce异常和负Eu异常,与岩浆锆石稀土配分曲线一致。另外,JD21P1B21-3、18锆石稀土配分曲线位于多数岩浆锆石曲线之上,且曲线平坦,具有低正Ce异常和负Eu异常特征,推测其受岩浆热液流体作用的影响。JD21P1B21-6、8、14锆石Th/U比值略低,Nb/Ta比值平均为2.95,略低于其余岩浆锆石(Nb/Ta比值平均为5.88),可能受变质流体作用的影响,但仍具有Ce正异常、LREE亏损、HREE富集和稀土配分曲线陡斜等岩浆锆石特征,只是其∑REE、∑LREE和∑HREE值均低于年轻的岩浆锆石。

图7

图7   锆石稀土元素配分模式图和(Sm/La)N-δCe关系图

注:图(a)阴影分布范围据Geisler et al.(2003);图(b)阴影分布范围据Hoskin(2005)

Fig.7   REE patterns and (Sm/La)N-δCe diagram of zircons


另外,(Sm/La)N-δCe关系图[图7(b)]显示,JD21P1B21-3、18锆石落入热液成因锆石范围,进一步证明了其形成受岩浆热液流体作用的影响;JD21P1B21-6、8、14锆石和其余锆石均落入岩浆成因锆石范围,亦证明其虽受变质流体作用的影响,但仍保留岩浆锆石特征,推测与变质作用引起的锆石锐晶化有关(柴鹏等,2023)。锆石微量元素分析结果见表2

表2   三山岛巨斑花岗岩锆石微量元素分析结果

Table 2  Ziron trace element analysis results of Sanshandao giant porphyritic granite(×10-6

点号LaCePrNdSmEuGdTbDyHoErTmYbLuNbTaΣREEΣLREEΣHREE(Lu/Gd)NδEuδCeNb/Ta
10.01313.7520.0310.9753.8390.65433.28811.763141.06546.750203.47839.266335.01757.3113.4320.6818871986813.850.12117.365.04
20.00428.0000.0511.1327.4911.21459.82620.664241.07880.099326.60461.784513.59880.37612.671.7971 422381 38410.810.12166.367.05
37.11537.7383.35017.6588.7961.24636.52211.385138.30848.039210.49441.091349.58559.8195.0300.7979717689513.170.181.896.31
40.00520.6540.0310.9144.3391.03333.42911.723150.35253.827242.29648.955424.45272.8487.1181.2111 065271 03817.530.19194.525.88
50.00521.2500.0391.0484.5130.97934.75312.376154.17455.117246.38749.922431.28274.3397.1371.2331 086281 05817.210.17160.085.79
60.0055.8800.0230.2380.6860.2913.6821.31815.6576.22632.7757.87084.58618.0061.5070.508177717039.330.4572.212.97
70.0319.8120.0300.6472.2430.53517.0316.45378.67928.953134.00628.049244.50544.4273.7030.8225951358220.980.1971.824.50
80.0062.0950.0040.1050.2540.1332.4221.12516.3956.65839.62110.322110.80023.5472.1210.712213321178.210.34104.892.98
90.02120.7230.1112.3859.4381.98763.12018.862206.93765.965270.11050.593413.63968.8175.3891.0561 193351 1588.770.1953.995.10
100.00622.3560.0401.0255.4051.16738.27513.453164.03259.381264.17652.632454.48079.3407.5271.2981 156301 12616.670.18163.165.80
110.00616.6180.0270.2861.2880.8298.9292.57830.93811.07456.03412.914129.78028.0371.8910.4292991928025.260.55175.114.40
120.00613.0290.0130.7632.8420.68125.4958.821103.46136.253161.96231.916277.02248.8624.5130.8107111769415.420.16261.785.57
130.00731.8930.0450.7861.2350.5946.4821.71216.8865.74426.6016.09157.49612.1641.7930.5621683513315.090.52206.823.19
140.0234.0840.0451.0932.6581.25714.7454.50651.23019.04089.34819.172180.20434.1763.9101.348422941218.640.4923.412.90
150.0227.6000.1011.5003.2840.90017.0055.85571.99928.083138.04231.430312.10562.2212.1181.0376801366729.430.3021.582.04
160.0066.8070.0170.4741.5140.89811.5593.42239.71614.76770.82915.255150.56431.6552.0370.4043471033822.030.47106.925.05
170.00620.2980.0461.0224.8731.05140.38213.411164.64758.667256.51248.678412.87371.4337.8641.2661 094271 06714.230.16130.576.21
183.92844.0832.45215.15410.2021.83346.44414.024160.62853.730229.54643.896378.00065.4528.3131.3491 0697899211.340.223.406.16
190.007111.4410.1834.31310.2246.19147.93912.927133.36443.409188.73036.939320.04457.3073.4270.3709731328419.620.71185.909.27
200.00824.0320.0380.8635.7631.17341.15013.181147.99347.607202.73737.876321.28753.08010.3672.1018973286510.380.17180.694.93
210.04930.3760.0491.3757.4011.53351.19415.915173.41656.607230.49043.161351.67559.44010.6291.6291 023419829.340.18138.166.53
220.25021.4870.1691.8444.8441.10934.56811.928146.73353.067231.31243.886384.92967.0026.5320.9901 0033097315.590.1924.816.59
230.00512.2120.0400.7232.7390.90921.2006.92682.88029.177132.24325.806225.51242.1914.0450.7395831756616.010.2691.115.48
240.05320.0000.0551.1014.2691.09634.61912.105150.25853.182236.26446.086403.64371.2816.2521.0391 034271 00716.560.1982.186.02
250.04613.5610.0190.4162.5180.60921.2297.76091.07632.546152.04730.248266.31748.3335.5321.0926671765018.310.18113.425.07
260.00520.2800.0511.1625.5491.16938.59513.269164.00457.127250.93948.217408.06371.3257.2261.0851 080281 05214.860.18118.256.66
270.04417.6930.0661.0244.8491.09437.83513.300156.87255.165239.08745.090376.61865.6905.9581.0211 0142599013.970.1766.075.84
290.00848.3260.0801.4022.6060.87710.6393.39937.95113.85267.92715.392154.02031.1552.3560.6693885333423.560.44180.543.52

注:(Lu/Gd)N表示元素球粒陨石标准化后的比值,球粒陨石标准化值据Sun et al.(1989)δCe=CeN/(LaN×PrN1/2δEu=EuN/(SmN×GdN1/2

新窗口打开| 下载CSV


(3)锆石结晶年龄

样品JD21P1B21的30个点位锆石U-Pb测年结果见表3。测试结果显示,样品年龄范围分布相对分散[图8(a)、8(b)],可划分为3组。对第1组谐和度较好的岩浆锆石进行分析,其206Pb/238U年龄分布在(125±2)~(131±2) Ma之间,Th平均含量为159×10-6、U平均含量为464×10-6、Th/U比值平均为0.3,获得加权平均年龄为(127.05±0.41) Ma(2σMSWD=2.3,n=22)[图8(c)],代表巨斑状花岗岩的侵位年龄。第2组锆石206Pb/238U年龄在(150±5)~(153±3) Ma之间,Th平均含量为18×10-6、U平均含量为134×10-6、Th/U比值平均为0.1,均相对偏低,获得加权平均年龄为(151.9±2.2) Ma(2σMSWD=0.82,n=3)[图8(d)],该年龄与晚侏罗世玲珑花岗岩侵位年龄一致,代表了捕获的围岩玲珑花岗岩中的继承锆石。第3组年龄偏离谐和线较远、谐和度较低、外部磨圆度高、裂隙发育且核部无明显成分韵律分带,207Pb/206Pb年龄范围为(2 181±40)~(2 642±28) Ma,属新太古代—古元古代,为前寒武纪变质结晶基底的继承锆石。

表3   三山岛巨斑花岗岩LA-ICP-MS锆石 U-Pb年龄分析结果

Table 3  Analysis results of LA-ICP-MS zircon U-Pb age in Sanshandao giant porphyritic granite

测试点编号

元素含量

/(×10-6

Th/U同位素比值年龄/Ma
ThU207Pb/206Pb207Pb/235U206Pb/238U207Pb/206Pb206Pb/238U207Pb/235U

谐和度

/%

测值1σ测值1σ测值1σ测值2σ测值2σ测值2σ
11835640.30.04910.02210.13420.02220.01980.00621071101262128599
22797740.40.04890.02040.13580.01930.02010.0080134911282129599
3862850.30.05090.08530.13520.05500.01990.0109-5316312731281299
41023550.30.04600.03050.12710.02990.02000.0084-441451282121795
51063670.30.04650.03040.12710.02860.01980.0075-591561272121796
614810.20.04940.06720.15920.06270.02370.0137-14131815141481798
7441700.30.04710.05220.12600.04790.01950.0130-18026412531201196
891450.10.05250.03670.17420.03740.02400.009719417815331621194
91844910.40.05020.02680.13570.02710.01950.00731431351252129797
10983160.30.05210.03150.14310.03020.01990.00942171411272135894
111464240.30.04920.02600.13430.02540.01980.0070951361262128699
12542000.30.04900.04190.13570.04170.02020.0096-7214129212910100
1387312.80.13620.01256.96110.00940.36860.00912 181402 022322 1051796
14301760.20.04820.04040.15840.04100.02350.0186921415051491199
15752800.30.17920.008211.17760.01050.45340.00542 642282 410222 5362095
16391860.20.05060.03130.13950.03150.02000.01002201251283132896
171324350.30.04820.02070.12940.01810.01950.0087701051252123499
182735860.50.04680.02460.12820.02400.01980.0059-81141271122697
194447210.60.04970.02300.13990.02050.02050.00821901091312133598
204841 1400.40.04820.01900.13270.01810.02000.004576921281126499
214479200.50.04740.01940.13260.01850.02030.0061541011292126498
221243580.30.04840.03060.13270.03150.01980.00783814812621267100
231013200.30.04990.03040.13760.02990.01990.00871371541272131797
24982820.30.04940.03100.13640.03110.02000.0087811611282129899
25963810.30.04790.02730.12980.02610.01960.0089591401252124699
261494660.30.04890.03350.13770.02740.02040.017612213413051317100
271494590.30.04560.02480.12440.02470.01970.0066-791261262119694
292332351.00.16380.00519.74850.00470.43010.00312 494172 306122 411996

新窗口打开| 下载CSV


图8

图8   锆石U-Pb年龄谐和图(a、c、d)和频率分布图(b)

Fig.8   Concordia diagram(a、c、d) and frequency distribution diagram (b) of zircon U-Pb age


5 讨论

5.1 岩体侵位时间和岩石单位归属

本次测试的三山岛岩体巨斑花岗岩锆石U-Pb加权平均年龄为(127.05±0.41) Ma,代表该岩体的侵位年龄,测试结果与前人获得的三山岛岩体年龄[(128±2)Ma、(129±1) Ma和(127±2) Ma](Wang et al.,1998Yang et al.,2012王立功等,2018)一致,因此确定三山岛岩体形成于早白垩世129~127 Ma这一较短的年龄段内。

三山岛岩体的锆石U-Pb同位素年龄与郭家岭花岗岩的侵位时间(125~130 Ma)高度吻合,证明二者属于同一岩浆活动期的产物。本文的岩相学特征和地球化学特征研究表明,三山岛岩体与郭家岭花岗岩具有较好的一致性。综合分析确定,三山岛岩体的岩石单位归属应为郭家岭序列。以往矿产勘查和区域地质调查中一直将三山岛断裂下盘的花岗岩归属于晚侏罗世玲珑序列,本文对三山岛岩体侵位时代和岩石单位归属的厘定表明,三山岛断裂下盘金矿体的赋矿围岩既有玲珑花岗岩也有郭家岭花岗岩,为深化认识金矿床成因提供了重要依据。

5.2 岩浆成因与构造环境

三山岛巨斑花岗岩及郭家岭花岗岩的主量元素、稀土元素、大离子亲石元素和高场强元素总体特征,指示岩浆活动受大陆地壳的影响。三山岛岩体样品的Mg#值为44,Cr和Ni含量较低,说明岩浆源区与下地壳物质关系密切。岩体中含有新太古代—古元古代和侏罗纪的继承锆石,指示早前寒武纪变质岩和侏罗纪玲珑花岗岩参与了三山岛岩体的岩浆过程。结合前人对郭家岭花岗岩的大量研究认为,由胶北早前寒武纪变质基底岩石组成的加厚下地壳部分熔融是三山岛岩体和郭家岭花岗岩的重要物质来源。三山岛岩体样品的La/Ta比值为49.32,大于25,具有幔源岩浆的特点(Lassiter et al.,1997);Nb/Ta比值为15.32,高于大陆地壳均值(11),与原始地幔均值(17.50)相近(Taylor et al.,1985Green,1995)。郭家岭花岗岩其他岩体的微量元素和同位素地球化学特征也显示有幔源物质的信息,尤其是在岩体中有较多微粒闪长质包体,显示了明显的壳幔岩浆混合特点(杨进辉等,2003张华锋等,2006)。地幔物质直接或间接参与郭家岭花岗岩成岩作用有2种可能机制,即幔源和壳源岩浆混合或早期幔源岩浆底侵形成的新生镁铁质下地壳部分熔融(杨进辉等,2003)。鉴于目前众多的研究显示微粒闪长质包体是岩浆混合的结果,认为郭家岭花岗岩和三山岛岩体既具有地壳物质来源特征,又有地幔物质来源的信息,是以下地壳酸性岩浆为主,有少量幔源基性岩浆参与混合作用的结果(王立功等,2018于晓卫等,2021)。

关于花岗岩中钾长石巨晶的成因主要有2种观点,分别认为结晶于岩浆演化早期和岩浆晚期通过结构加粗形成(侯国旺等,2017)。鉴于三山岛岩体中的钾长石巨晶包含较多斜长石和石英等矿物颗粒,且晶体的自形程度较低等原因,本文认为三山岛岩体中的钾长石巨晶是在岩浆期后通过结构加粗形成的,很可能与金成矿早期流体活动有关。胶东金矿床中存在普遍的钾化现象,在蚀变岩型金矿床的外围一般存在很宽的钾化带,如焦家断裂成矿带的钾化带宽度达1 km左右(吕丞训等,2021),三山岛岩体分布于紧邻三山岛断裂成矿带的下盘,易于发生钾化蚀变。对焦家成矿带寺庄金矿床的研究表明,钾化(红化)蚀变属于成矿前蚀变,流体性质为高温、高氧逸度和富K流体,不同于成矿期的中低温、还原性和富CO2流体(Chai et al.,2019a2019b2019c),表明钾化流体并未直接参与金成矿过程(汪浩等,2020)。综上所述,认为三山岛巨斑花岗岩中的钾长石巨晶是在岩浆期后、金成矿之前的钾化阶段通过交代斜长石即结构加粗而形成的。

在构造环境判别图解中,三山岛岩体和郭家岭花岗岩具埃达克岩特征[图9(a)、9(b)]。在SiO2-Mg#关系图[图9(c)]中,三山岛岩体和郭家岭花岗岩与埃达克岩石相比MgO含量和Mg#值偏低,特征与TTG岩石和富钠花岗岩相似;同样,稀土元素配分图和微量元素蛛网图[图5(a)、5(b)]亦显示郭家岭花岗岩微量元素特征与富钠花岗岩和年轻的TTG(<3 Ga)相似。在R1-R2图解[图9(d)],郭家岭花岗岩主要落入造山晚期和碰撞后期范围,指示其可能形成于板块碰撞后的环境。

图9

图9   构造环境判别图解

注:埃达克岩、TTG及富钠花岗岩数据引自杨进辉等(2003);郭家岭花岗岩数据引自文献(罗贤冬等,2014陈广俊等,2014王立功等,2018王斌等,2021

Fig.9   Discrimination diagram of tectonic environment


研究表明,郭家岭花岗岩的Sr和Y含量具有与早先形成的玲珑花岗岩相似的埃达克岩特征(Yang et al.,2012),Sr和Nd同位素特征与邻近其后的伟德山花岗岩(125~111Ma)及基性脉岩接近(Yang et al.,2004Song et al.,2020);郭家岭花岗岩的构造环境则与玲珑花岗岩(Yang et al.,2012)完全不同,而与伟德山花岗岩构造环境(Song et al.,2020)相似。玲珑花岗岩形成于三叠纪华北板块与扬子板块强烈碰撞之后,具后碰撞花岗岩类特征,显示具有受华北板块和扬子克拉通共同影响的印记,物质来源包括造山带俯冲杂岩和加厚的华北克拉通下地壳(Yang et al.,2012);伟德山花岗岩具有弧花岗岩特征,显示受太平洋板块俯冲和华北克拉通破坏影响的特征,物质来源于华北太古宙地壳和富集岩石圈地幔熔融(Song et al.,2020)。白垩纪,华北克拉通发生破坏、岩石圈减薄并伴随软流圈物质上涌(Menzies et al.,1993Gao et al.,20022009Xu et al.,2009Yang et al.,2012),发生了强烈的构造活动、岩浆作用及盆地裂陷,在胶东地区产生了诸如沂沭裂谷系、胶莱盆地、花岗岩类、火山岩系和中—基性脉岩等广泛的构造岩浆活动,郭家岭花岗岩和三山岛岩体即形成于这一构造岩浆背景中。

5.3 岩浆活动与金成矿

前人对郭家岭花岗岩与胶东金成矿的关系进行了较多研究,部分学者认为胶东金矿为郭家岭花岗岩岩浆期后热液矿床(Wang et al.,1998罗贤冬等,2014),郭家岭花岗岩为金成矿提供了物质来源。胶西北金矿床的空间分布与郭家岭花岗岩紧密相伴,在焦家金矿田的东北侧分布有郭家岭花岗岩的新城和上庄岩体,在玲珑金矿田的西北侧分布有曲家岩体,大柳行金矿田产于郭家岭岩体的东部,三山岛岩体则位于三山岛金矿田的西侧,且各相关岩体和金矿床均产于控矿的三山岛、焦家和招平断裂下盘,大柳行金矿田中矿床的直接围岩为郭家岭花岗岩。郭家岭花岗岩的多个岩体沿NEE走向呈串珠状排列(图1),三山岛金矿田、焦家金矿田、灵北金矿田、鞍石金矿田、玲珑金矿田和大柳行金矿田等构成大致位于郭家岭花岗岩带南部的与之平行的NEE走向排列状态。在形成时间上,多数学者认为金矿成矿年龄为120 Ma左右(宋明春等,20142022Chai et al.,2020Deng et al.,2020),成矿时间晚于郭家岭型花岗岩5 Ma以上(翟明国等,2001)。对成岩、成矿深度的研究表明,郭家岭花岗岩的侵位深度为(13±1.6)km(张华锋等,2006),金矿床主体形成于5~10 km深度范围(宋明春等,2022),成矿深度浅于花岗岩侵位深度3 km以上。本文测试得到三山岛巨斑状花岗岩的金丰度值为0.41×10-9,明显低于早前寒武纪变质岩的金丰度值(1.46×10-9)(田瑞聪等,2022)和玲珑花岗岩的金丰度值(0.70×10-9)(陈玉民等,2019),也低于华北地台大陆地壳金丰度值(1.0×10-9)(迟清华等,1997)。通过上述关于金矿床在空间上与郭家岭花岗岩紧密相伴、成矿时间晚于成岩时间以及成矿深度浅于岩浆生成深度等分析,本研究认为金成矿时郭家岭花岗岩已固结并抬升到成矿的深度,金矿床不是郭家岭花岗岩岩浆期后热液矿床,而可能是郭家岭花岗岩的侵位为成矿提供了有利空间。根据金的丰度值,本文认为郭家岭花岗岩为贫金花岗岩,不能为成矿提供直接的物质来源,但可能是在下地壳部分熔融产生花岗岩浆的过程中金残留在源区。

结合大量前人研究结果,本文提出岩浆活动与金成矿的过程如下:中生代,胶东半岛经历了由华北板块与扬子板块碰撞向太平洋板块俯冲构造体系转化的演化过程,产生了强烈的构造岩浆活动。中三叠世,华北克拉通与扬子克拉通碰撞,在胶东东部威海—乳山一带形成超高压变质带;晚三叠世,超高压岩石快速折返。侏罗纪,古太平洋板块向西低角度俯冲,造成华北克拉通东部地壳增厚,主要由早前寒武纪基底物质组成的胶东下地壳活化,大范围陆壳重熔,形成了具埃达克岩地球化学特征的玲珑花岗岩。白垩纪,古太平洋板块高角度俯冲和回撤(Yang et al.,2021),华北克拉通破坏,克拉通岩石圈及地壳减薄(Xu et al.,2009),幔源岩浆上升到地壳底部发生底侵,诱发下地壳物质发生部分熔融产生长英质岩浆(Goss et al.,2010),该时期胶东地区发生强烈伸展作用,深部岩浆活动与地壳快速隆升及浅部变质核杂岩、张性断层和断陷盆地等伸展构造,共同控制了以Au为主的矿床成矿系列及成矿演化过程,构成热隆—伸展成矿系统(宋明春等,2023)。其中,早白垩世早期(~130 Ma),受古太平洋板块高角度俯冲的影响,在胶东半岛的西北部,形成壳幔混合郭家岭花岗岩;早白垩世中晚期(~120 Ma),在俯冲的古太平洋板块回撤过程中,软流圈地幔部分熔融产生的基性岩浆上侵分异出高镁闪长岩(宋明春等,2020)和洋岛型基性脉岩(邓军等,2023),同时幔源和壳源岩浆混合及结晶分异,主要在胶东东部形成具弧花岗岩性质的伟德山和崂山花岗岩。研究表明,从郭家岭花岗岩侵位至伟德山花岗岩形成,在约10 Ma内郭家岭型花岗岩岩体的隆升量达10 km左右(豆敬兆等,2015),表明早白垩世早中期胶东地区发生了快速的花岗岩侵位和强烈的地壳隆升作用。由于晚中生代强烈的壳幔相互作用,由较高背景金丰度的早前寒武纪变质基底岩石组成的胶东半岛下地壳,在部分熔融过程中地球化学元素重新调整,金质被活化、迁移,形成了富金的流体库,同时产生了贫金的花岗岩。花岗岩快速侵位和地壳强烈隆升,引发了广泛的伸展构造,沿玲珑花岗岩体与早前寒武纪变质岩系界面等构造薄弱面产生缓倾角拆离断层(如三山岛、焦家和三山岛断裂等),同时由于钾化作用热液钾长石交代斜长石导致岩石体积膨胀而破裂,在主拆离断层下盘产生密集的张裂隙,这为成矿流体聚集和矿化富集提供了良好的物理圈闭空间。随着早白垩世大规模花岗岩类、高镁闪长岩和基性脉岩的上侵及地壳隆升,富金流体库的热力平衡被破坏,流体快速迁移,到达上地壳中的拆离断层系统中汇聚、运移并与大气降水混合,最终在断裂倾角阶梯状变化位置和拆离断层下盘的次级断裂、裂隙中沉淀成矿(宋明春等,20122023)。

6 结论

(1)三山岛巨斑花岗岩分布在控矿的三山岛断裂下盘,锆石U-Pb加权平均年龄为(127.05±0.41) Ma,属于郭家岭花岗岩,成岩时间早于胶东金成矿时间。

(2)三山岛巨斑花岗岩属过铝质—钙碱性岩石,岩石地球化学特征与富钠花岗岩和年轻的TTG(<3 Ga)相似,是下地壳酸性岩浆与少量幔源基性岩浆混合作用的结果,形成于太平洋板块俯冲和华北克拉通破坏背景下的伸展构造环境。岩体中的钾长石巨晶是岩浆期后热液钾化作用的结果。

(3)具有较高背景金丰度的早前寒武纪变质基底岩石部分熔融过程中,地球化学元素重新调整,金质被活化、迁移,形成富金流体库,并产生贫金花岗岩。花岗岩快速侵位和地壳强烈隆升产生的拆离断层系统,以及钾化作用导致的岩石体积膨胀而破裂,为成矿流体聚集和矿化富集提供了良好的物理圈闭空间。

矿业界)

http://www.goldsci.ac.cn/article/2024/1005-2518/1005-2518-2024-32-5-813.shtml

参考文献

Chai PHou Z QZhang H Ret al2019a.

Geology,fluid inclusion,and H-O-S-Pb isotope constraints on the mineralization of the Xiejiagou gold deposit in the Jiaodong Peninsula

[J].Geofluids,(1):3726465.

[本文引用: 1]

Chai PZhang H RDong L Let al2019b.

Geology and ore-forming fluids of the Dayingezhuang gold deposit,Jiaodong Peninsula,eastern China:Implications for mineral exploration

[J].Journal of Geochemical Exploration,204224-239.

[本文引用: 1]

Chai PZhang H RHou Z Qet al2020.

Geochronological framework of the Damoqujia gold deposit,Jiaodong Peninsula,China:Implications for the timing and geologic setting of gold mineralization

[J].Geological Journal,55596-613.

[本文引用: 1]

Chai PZhang Z YHou Z Q2019c.

Geological and fluid inclusion constraints on gold deposition processes of the Dayingezhuang gold deposit,Jiaodong Peninsula

[J].China Acta Geologica Sinica(English Edition),934):955-971.

[本文引用: 1]

Chai PengSun JingguiYuan Linglinget al2023.

Zircon trace element geochemical characteristics of ore-bearing igneous rocks from Duhuangling high-sulfidation epithermal gold deposit and its geological significance,Yanji Area,Jilin Province

[J].Journal of Jilin University(Earth Science Edition),533):767-784.

Chen GuangjunSun FengyueLi Yuchunet al2014.

U-Pb dating,geochemical characteristics and geological significance of Guojialing grandiorite in Jiaodong Peninsula

[J].Global Geology,331):39-47.

Chen YuminZeng QingdongSun Zhifuet al2019.

Study on geochemical background field of the gold deposits in Jiaodong,China

[J].Gold Science and Technology,276):791-801.

Chi QinghuaYan MingcaiQi Changmou1997.

Mean chemical composition of major metamorphic rocks of Archean in North China Platform

[J].Journal of Changchun University of Earth Sciences,272):126-134.

Deng JQiu K FWang Q F2020.

In situ dating of hydrothermal monazite and implications for the geodynamic controls on ore formation in the Jiaodong gold province,eastern China

[J].Scientific Communications,1153):671-685.

[本文引用: 1]

Deng JunWang QingfeiZhang Lianget al2023.

Metallogenetic model of Jiaodong-type gold deposits Eastern China

[J].Science China(Earth Sciences),6610):2287-2310.

Dou JingzhaoFu ShunZhang Huafenget al2015.

Consolidation and cooling paths of the Guojialing granodiorites in Jiaodong Peninsula:Implication for crustal uplift and exhumation

[J].Acta Petrologica Sinica,318):2325-2336.

Gao SRudnick R LCarlson R Wet al2002.

Re-Os evidence for replacement of ancient mantle lithosphere beneath the North China Craton

[J].Earth and Planetary Science Letters,1983-4):307-322.

[本文引用: 1]

Gao SZhang J FXu W Let al2009.

Delamination and destruction of the North China Craton

[J].Chinese Science Bulletin,5419):3367-3378.

[本文引用: 1]

Geisler TRashwan A ARahn M K Wet al2003.

Low-temperature hydrothermal alteration of natural metamict zircons from the Eastern Desert,Egypt

[J].Mineralogical Magazine,673):485-508.

[本文引用: 1]

Goss C SWhilde S AWu F Yet al2010.

The age,isotopic signature and significance of the youngest Mesozoic granitoids in the Jiaodong Terrane,Shandong Province,North China Craton

[J].Lithos,1203/4):309-326.

[本文引用: 1]

Green T H1995.

Significance of Nb/Ta as an indicator of geochemical processes in the crust-mantle system

[J].Chemical Geology,120347-359.

[本文引用: 1]

Guan KangLuo ZhenkuanMiao Laichenget al1998.

SHRIMP in zircon chronology for Guojialing suite granite in Jiaodong Zhaoye District

[J].Scientia Geologica Sinica,333):318-328.

Guo JinghuiChen FukunZhang Xiaomanet al2005.

Evolution of Syn-to Post-collisional Magmatism from North Sulu UHP Belt Eastern China:Zircon U-Pb Geochronology

[J].Acta Petrologica Sinica,214):1281-1301.

Hoskin P W O2005.

Trace-element composition of hydrothermal zircon and the alteration of Hadean zircon from the Jack Hills,Australia

[J].Geochimica et Cosmochimica Acta,693):637-648.

[本文引用: 1]

Hou GuowangLi HongyanNiu Zhijianet al2017.

Review on the K-feldspar megacryst in granite and research methodology

[J].Bulletin of Mineralogy,Petrology and Geochemistry,362):345-353.

Hu F FFan H RYang J Het al2004.

Mineralizing age of the Rushan lode gold deposit in the Jiaodong Peninsula:SHRIMP U-Pb dating on hydrothermal zircon

[J].Chinese Science Bulletin,4915):1629-1636.

[本文引用: 1]

Hu ShilingWang SongshanSang Haiqinget al1987.

Isotopic ages of Linglong and Guojialing Batholiths in Shandong Province and their geological implication

[J].Acta Petrologica Sinica,33):38-89.

Hu Z CLiu Y SGao Set al2012.

Improved in situ Hf isotope ratio analysis of zircon using newly designed X skimmer cone and Jet sample cone in combination with the addition of nitrogen by laser ablation multiple collector ICP-MS

[J].Journal of Analytical Atomic Spectrometry,279):1391-1399.

[本文引用: 1]

Lassiter J CDepaolo D J1997.Plumes/Lithosphere Interaction in the Generation of Continental and Ocranic Flood Basalts:Chemical and Isotope Constrationts[M]//Mahoney J J,Coffin M F.Large Igneous ProvincesContinental,Oceanic,and Planetary Flood Volcanism.Washington:American Geophysical Union.

[本文引用: 1]

Li ShixianLiu ChangchunAn Yuhonget al2007.Geology of Jiaodong Gold Mine[M].BeijingGeology Press.

Chengxun Huo QinglongTang Zhanxinet al2021.

Structural alteration zone and listric distribution characteristics in Northwest Jiaodong Peninsula

[J].Geoscience,355):1274-1281.

Ludwig K R2003.

ISOPLOT 3.0:A geochronological toolkit for Microsoft Excel

[J].Berkeley Geochronology Center Special Publication,41-70

[本文引用: 1]

Luo XiandongYang XiaoyongDuan Liu’anet al2014.

Geocheical and geochhronological study of the gold-related Guojialing pluton and Shangzhuang pluton in Jiaobei block

[J].Acta Geologica Sinca,8810):1874-1888.

Ma LJiang S YDai B Zet al2013.

Multiple sources for the origin of Late Jurassic Linglong adakitic granite in the Shandong Peninsula,Eastern China:Zircon U-Pb geochronological,geochemical and Sr-Nd-Hf isotopic evidence

[J].Lithos,162251-263.

[本文引用: 1]

Menzies M AFan W MZhang M1993.

Palaeozoic and Cenozoic lithoprobes and the loss of >120 km of Archean lithosphere,Sino-Korean craton,China

[J].Geological Society,London,Special Publications,761):71-81.

[本文引用: 1]

Miao LaichengLuo ZhenkuanGuan Kanget al1998.

The implication of the SHRIMP U-Pb age in zircon to the petrogenesis of the Linglong granite,east Shangdong Province

[J].Acta Petrologica Sinica,142):198-206.

Song M CDing Z JZhang J Jet al2021.

Geology and mineralization of the Sanshandao supergiant gold deposit(1200t)in the Jiaodong Peninsula,China:A review

[J].China Geology,44):686-719.

[本文引用: 1]

Song MingchunLi JieZhou Jianboet al2020.

The discovery and tectonic setting of the early cretaceous high-Mg diorites in the Jiaodong Peninsula

[J].Acta Petrologica Sinica,361):279-296.

[本文引用: 3]

Song MingchunLi SanzhongYi Pihouet al2014.

Classification and metallogenic theory of the Jiaojia-style gold depo-sit in Jiaodong Peninsula China

[J].Journal of Jilin University(Earth Science Ediion),441):87-104.

Song MingchunSong YingxinLi Jieet al2023.

Thermal doming-extension metallogenic system of Jiaodong type gold deposits

[J].Acta Petrologica Sinica,395):1241-1260.

[本文引用: 1]

Song M CWang LSong Y Xet al2023.

Geometry and origin of supergiant gold deposits in the Jiaodong gold province,eastern China

[J].Journal of Asian Earth Sciences,25415):105744.

Song MingchunYang LiqiangFan Hongruiet al2022.

Current progress of metallogenic research and deep prospecting of gold deposits in the Jiaodong Peniusula during 10 years for exploration breakthrough strategic action

[J].Geological Bulletin of China,416):903-935.

Song MingchunYi PihouXu Junxianget al2012.

A step metallogenetic model for gold deposits in the northwestern Shandong Peninsula

[J].Science China:Earth Sciences,427):992-1000.

Song M CZhou J BSong Y Xet al2020.

Mesozoic Weideshan granitoid suite and its relationship to large-scale gold mineralization in the Jiaodong Peninsula,China

[J].Geological Journal,555703-5724.

Sun S SMcdonough W F1989.

Chemical and isotopic systematics of oceanic basalts:Implication for mantle composition and processes

[J].Geological Society Special Publication,421):313-345

[本文引用: 1]

Taylor S RMclennan S M1985.The Continental Crust:Its Composition and Evolution[M].OxfordBlackwell.

[本文引用: 1]

Tian RuicongLi DapengZhang Wenet al2022.

The mixing of mesozoic cruse-mantle magma is the key to the source of large amounts of gold deposits in the Jiaobei uplift,China

[J].Acta Petrologica Sinica,381):23-40.

Vermeesch P2018.

IsoplotR:A free and open toolbox for geochronology

[J].Geoscience Frontiers,51479-1493.

[本文引用: 1]

Wang BinSong MingchunHuo Guanget al2021.

Source characteristics and tectonic evolution of Late Mesozoic granites in Jiaodong and their implications for gold mineralization

[J].Acta Petrologica et Mineralogica,402):288-320.

Wang HaoYang LiqiangWang Siruiet al2020.

The Process of rubefication and its relationship with gold mineralization of Sizhuang gold deposit,northwestern Jiaodong Peninsula,eastern China

[J].Acta Petrologica Sinica,365):1515-1528.

Wang JianZhu LixinMa Shengminget al2020.

Hydrothermal alteration associated with mesozoic Linglong-type granite-hosting gold mineralization at the Haiyu gold deposit,Jiaodong gold province

[J].Geological Bulletin of China,3911):1807-1826.

Wang L GQiu YMcNaughton N Jet al1998.

Constraints on crustal evolution and gold metallogeny in the Northwestern Jiaodong Peninsula,China,from SHRIMP U-Pb zircon studies of granitoids

[J].Ore Geology Reviews,13275-291.

[本文引用: 4]

Wang LigongZhu DechengGuo Ruipenget al2018.

Geochemistry,Zircon U-Pb age and Lu-Hf isotopes of the Cang-shang and Sanshandao monzogranites in the northwestern Jiaodong Peninsula,China

[J].Acta Geologica Sinca,9210):2081-2095.

Wang ShijinWan YushengGuo Ruipenget al2011.

SHRIMP zircon dating of Linglong type (superunit) granite in eastern Shandong Province

[J].Shandong Land and Resources,274):1-7.

Xu HonglinZhang DequanSun Guiyinget al1997.

Characteristics and genesis of Kunyushan granite and its relation with gold deposits in Jiaodong

[J].Acta Petrologica Et Mineralogica,162):131-143.

Xu Y GLi H YPang C Jet al2009.

On the timing and duration of the destruction of the North China Craton

[J].Chinese Science Bulletin,5419):3379-3396.

[本文引用: 2]

Yang J HChung S LZhai M Get al2004.

Geochemical and Sr-Nd-Pb isotopic compositions of mafic dikes from the Jiaodong Peninsula,China:Evidence for vein-plus-peridotite melting in the lithospheric mantle

[J].Lithos,733):145-160.

[本文引用: 1]

Yang JinhuiZhu MeifeiLiu Weiet al2003.

Geochemistry and petrogenesis of Guojialing granodiorites from the nor-thwestern Jiaodong Penninsula,eastern China

[J].Acta Petrologica Sinica,194):692-700.

Yang K FFan H RSantosh Met al2012.

Reactivation of the Archean lower crust:Implications for zircon geochronology,elemental and Sr-Nd-Hf isotopic geochemistry of late Mesozoic granitoids from northwestern Jiaodong terrane,the North China Craton

[J].Lithos,146/147112-127.

[本文引用: 8]

Yang J HXu LSun J Fet al2021.

Geodynamics of decratonization and related magmatism and mineralization in the North China Craton

[J].Science China(Earth Sciences),649):1409-1427.

[本文引用: 1]

Yu XiaoweiWang LaimingLiu Handonget al2021.

Study on Early Cretaceous Guojialing Granite in Jiaodong Area

[J].Shandong Land and Resources,379):12-25.

Zhai MingguoLiu WenjunYang Jinhui2001.

Large scale gold ore concentration area and large scale mineralization in Jiaodong

[J].Science in China(Series D),317):545-552.

Zhang HuafengLi ShengrongZhai Mingguoet al2006.

Crust uplift and its implications in the Jiaodong Peninsula,Eastern China

[J].Acta Petrologica Sinica,222):285-295.

Zhang JZhao Z FZheng Y Fet al2010.

Postcollsional magmatism:Geochemical constrains on the petrogenesis of Mesozoic granitoids in the Sulu orogen,China

[J].Lithos,1193/4):512-536.

[本文引用: 1]

Zhong LingzhiMao XianchengLiu Zhankunet al2022.

Ore-controlling effect of structural geometry features in the Sanshandao gold belt,Jiaodong Peninsula,China:Insights from numerical simulation

[J].Gold Science and Technology,303):352-1365.

柴鹏孙景贵袁玲玲2023.

吉林延吉杜荒岭浅成热液金矿床岩体锆石微量元素地球化学特征及其地质意义

[J].吉林大学学报(地球科学版),533):767-784.

[本文引用: 1]

陈广俊孙丰月李玉春2014.

胶东郭家岭花岗闪长岩U-Pb年代学、地球化学特征及地质意义

[J].世界地质,331):39-47.

[本文引用: 4]

陈玉民曾庆栋孙之夫2019.

胶东金地球化学背景研究

[J].黄金科学技术,276):791-800.

[本文引用: 1]

迟清华鄢明才戚长谋1997.

华北地台太古宙主要变质岩的平均化学组成

[J].长春地质学院学报,272):126-134.

[本文引用: 1]

邓军王庆飞张良2023.

胶东型金矿成因模型

[J].中国科学(地球科学),5310):2323-2347.

[本文引用: 1]

豆敬兆付顺张华锋2015.

胶东郭家岭岩体固结冷却轨迹与隆升剥蚀

[J].岩石学报,318):2325-2336.

[本文引用: 1]

关康罗镇宽苗来成1998.

胶东招掖郭家岭型花岗岩锆石SHRIMP年代学研究

[J].地质科学,333):318-328.

[本文引用: 2]

郭敬辉陈福坤张晓曼2005.

苏鲁超高压带北部中生代岩浆侵入活动与同碰撞—碰撞后构造过程:锆石U-Pb年代学

[J].岩石学报,214):1281-1301.

[本文引用: 1]

侯国旺李红艳牛之建2017.

花岗岩中钾长石巨晶成因及研究方法概述

[J].矿区岩石地球化学通报,362):345-353.

[本文引用: 1]

胡世玲王松山桑海清1987.

山东玲珑和郭家岭岩体的同位素年龄及其地质意义

[J].岩石学报,33):38-89.

[本文引用: 1]

李士先刘长春安郁宏2007.胶东金矿地质[M].北京地质出版社.

[本文引用: 1]

罗贤冬杨晓勇段留安2014.

胶北地块与金成矿有关的郭家岭岩体和上庄岩体年代学及地球化学研究

[J].地质学报,8810):1874-1888.

[本文引用: 7]

吕承训霍庆龙唐占信2021.

胶西北断裂构造蚀变分带及其铲式分布特征

[J].现代地质,355):1274-1281.

苗来成罗镇宽关康1998.

玲珑花岗岩中锆石的离子质谱U-Pb年龄及其岩石学意义

[J].岩石学报,142):198-206.

宋明春伊丕厚徐军祥2012.

胶西北金矿阶梯式成矿模式

[J].中国科学:地球科学,427):992-1000.

[本文引用: 1]

宋明春李三忠伊丕厚2014.

中国胶东焦家式金矿类型及其成矿理论

[J].吉林大学学报(地球科学版),441):87-104.

[本文引用: 1]

宋明春李杰周建波2020.

胶东早白垩世高镁闪长岩类的发现及其构造背景

[J].岩石学报,361):279-296.

[本文引用: 1]

宋明春杨立强范宏瑞2022.

找矿突破战略行动十年胶东金矿成矿理论与深部勘查进展

[J].地质通报,416):903-935.

[本文引用: 2]

宋明春宋英昕李杰2023.

胶东型金矿热隆—伸展成矿系统

[J].岩石学报,395):1241-1260.

[本文引用: 2]

田瑞聪李大鹏张文2022.

胶北隆起中生代壳幔岩浆的混合反应是巨量金质来源的关键

[J].岩石学报,381):23-40.

[本文引用: 1]

汪浩杨立强王偲瑞2020.

胶西北寺庄金矿床红化蚀变过程及其对金成矿贡献

[J].岩石学报,365):1515-1528.

[本文引用: 1]

王斌宋明春霍光2021.

胶东晚中生代花岗岩的源区性质与构造环境演化及其对金成矿的启示

[J].岩石矿物学杂志,402):288-320.

[本文引用: 4]

王建朱立新马生明2020.

胶东三山岛北海域金矿床热液蚀变作用研究

[J].地质通报,3911):1807-1826.

[本文引用: 1]

王立功祝德成郭瑞朋2018.

胶西北仓上、三山岛岩体二长花岗岩地球化学、锆石U-Pb年龄及Lu-Hf同位素研究

[J].地质学报,9210):2081-2095.

[本文引用: 8]

王世进万渝生郭瑞朋2011.

鲁东地区玲珑型(超单元)花岗岩的锆石SHRIMP定年

[J].山东国土资源,274):1-7.

[本文引用: 1]

徐洪林张德全孙桂英1997.

胶东昆嵛山花岗岩的特征、成因及其与金矿的关系

[J].岩石矿物学杂志,162):131-143.

[本文引用: 1]

杨进辉朱美妃刘伟2003.

胶东地区郭家岭花岗闪长岩的地球化学特征及成因

[J].岩石学报,194):692-700.

[本文引用: 4]

于晓卫王来明刘汉栋2021.

胶东地区早白垩世郭家岭期花岗岩

[J].山东国土资源,379):12-25.

[本文引用: 1]

翟明国刘文军杨进辉2001.

胶东大型黄金矿集区及大规模成矿作用

[J].中国科学(D辑),317):545-552.

[本文引用: 1]

张华锋李胜荣翟明国2006.

胶东半岛早白垩世地壳隆升剥蚀及其动力学意义

[J].岩石学报,222):285-295.

[本文引用: 2]

钟伶志毛先成刘占坤2022.

胶东三山岛金矿带构造几何特征控矿作用:来自数值模拟的启示

[J].黄金科学技术,303):352-1365.

[本文引用: 1]

/