img

QQ群聊

img

官方微信

  • CN 62-1112/TF 
  • ISSN 1005-2518 
  • 创刊于1988年
高级检索

黄金科学技术, 2019, 27(1): 97-104 doi: 10.11872/j.issn.1005-2518.2019.01.097

围压与料浆浓度对尾砂充填体峰后损伤演化研究

杨世兴1,2, 付玉华,2,3,*, 占飞1

1. 江西理工大学资源与环境工程学院,江西 赣州 341000

2. 江西省矿业工程重点实验室,江西 赣州 341000

3. 江西理工大学应用科学学院,江西 赣州 341000

Study on Post Peak Damage Evolution of Tailings Filling Body by Confining Pressure and Slurry Concentration

YANG Shixing1,2, FU Yuhua,2,3,*, ZHAN Fei1

1. College of Resources and Environmental Engineering,Jiangxi University of Science and Technology,Ganzhou 341000,Jiangxi,China

2. Jiangxi Provincial Key Laboratory of Mining Engineering,Ganzhou 341000,Jiangxi,China

3. College of Applied Science,Jiangxi University of Science and Technology,Ganzhou 341000,Jiangxi,China

收稿日期: 2018-01-15   修回日期: 2018-05-27   网络出版日期: 2019-03-11

基金资助: 国家自然科学基金项目“频繁爆破作用下岩体累积损伤演化规律及振动效应研究”(编号:51464015)资助

Received: 2018-01-15   Revised: 2018-05-27   Online: 2019-03-11

作者简介 About authors

杨世兴(1992-),男,河北石家庄人,硕士研究生,从事岩土工程稳定性及其应用方面的研究工作444533881@qq.com 。

付玉华(1977-),男,江西上饶人,博士,副教授,从事岩土稳定性及爆破研究工作48136735@qq.com , E-mail:48136735@qq.com

摘要

对于矿山地下深部开采存在的地压问题,选取3组料浆浓度充填试件在RMT-150C压力机上经过不同围压三轴压缩后再进行单轴压缩试验,获得经过3组围压压缩后不同料浆浓度试件的应力—应变曲线数据,并结合Lemaitre应变等价原理,得到全尾砂胶结充填体的峰前后损伤值公式和损伤本构方程。从损伤—应变曲线可知:当料浆浓度一定时,增大围压,充填体弹性变形阶段缩短,更早达到屈服极限且峰值损伤值增大,继续增大围压,充填材料峰值损伤值降低;在低围压条件下,增大料浆浓度抑制了峰前损伤增长,但促进峰后损伤增长;在高围压条件下,随着料浆浓度的增大,充填材料损伤值先降低后升高,促进了试件破坏。

关键词: 深部开采 ; 地压 ; 围压 ; 料浆浓度 ; 损伤值 ; 尾砂充填 ; 应变

Abstract

In recent years,with the increasing depth of underground mining and the increasing probability of accidents such as goaf collapse and surface subsidence,tailings filling has become one of the most popular methods of composite aggregate filling.It can not only effectively limit ground pressure activities,but also be beneficial to tailings treatment and environmental protection in mining areas.However,the damage and destruction of filling body also threatens the safe production of the mine.With the increasing of underground mining depth,the problem of ground pressure is becoming more and more obvious.By using the whole tailings of a mine and 32.5 type cement,the filling specimens with 100 mm×50 mm (high*diameter) are preparedunder lime-sand ratio of 1∶8,curing age of 28 days,slurry concentration of 66%,70% and 74%.The confining pressure conditions are 0.4,0.7 and 1.0 MPa.The RMT-150C in the Key Laboratory of Mining Engineering of Jiangxi Province was used.The experimental operation was carried out on the hydraulic press.The force (small) -displacement control was adopted in the test process,and the loading rate was 0.002 mm/s.In order to reduce the influence of other factors on the test data,the specimen is regarded as the preparation and maintenance under the same test condition.According to Lemaitre strain equivalence principle,the pre-peak damage value and post-peak damage value are deduced.The damage-strain curves of filling slurry concentration of 70%,damage-strain curves under different confining pressures and different slurry concentration under confining pressures of 0.7 MPa were obtained through experimental data.When the filling slurry is 70%,under the confining pressures of 0.4,0.7 and 1.0 MPa,the corresponding damage values of peak limit are 0.2111,0.2860 and 0.1920 respectively,showing a trend of increasing first and then decreasing.When the confining pressures is 0.7 MPa,under the slurry concentration of 66%,70% and 74%,the damage values corresponding to the peak limit are 0.303,0.286 and 0.275,respectively,and the whole body shows a decreasing trend in turn.From the damage-strain curves,it can be seen that when the slurry concentration is constant,the increase of confining pressure shortens the elastic deformation stage of filling body,achieves the yield limit earlier and the peak damage value increases.Continues to increase confining pressure, the peak damage value of filling material decreases.At low confining pressure,the increase of slurry concentration inhibits the increase of pre-peak damage but promotes the increase of post-peak damage.At high confining pressure,with the increase of slurry concentration,the damage value of filling materials decreases first and then increases,which promotes the failure of the filling specimens.

Keywords: deep mining ; ground pressure ; confining pressure ; slurry concentration ; damage value ; tailings filling ; strain

PDF (2894KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

杨世兴, 付玉华, 占飞. 围压与料浆浓度对尾砂充填体峰后损伤演化研究[J]. 黄金科学技术, 2019, 27(1): 97-104 doi:10.11872/j.issn.1005-2518.2019.01.097

YANG Shixing, FU Yuhua, ZHAN Fei. Study on Post Peak Damage Evolution of Tailings Filling Body by Confining Pressure and Slurry Concentration[J]. Gold Science and Technology, 2019, 27(1): 97-104 doi:10.11872/j.issn.1005-2518.2019.01.097

随着地下开采深度的不断加大,空区坍塌、地表沉降等矿区事故概率增加,尾砂充填日益成为最流行的复合骨料充填方法之一。尾砂充填法不仅可以有效限制地压活动,而且有利于矿区尾砂处理和环境保护[1,2]。然而,充填体的损伤破坏问题同样威胁着矿山的安全生产,因此研究充填体损伤因素势在必行。

近年来,国内外学者通过研究材料受损时的有效承压面积,提出运用应变等效假设来定义损伤,分析单轴压缩过程中充填材料的声发射参数,并利用声发射损伤变量,得出分级尾砂胶结充填体的损伤演化方程和损伤本构模型,研究了不同灰砂配比下充填体的损伤特性及与岩石的合理匹配,由此建立损伤软—硬本构模型,得出了尾砂充填体峰后应变硬化过程及规律[3,4,5],为充填体损伤研究提供了扎实的理论基础。部分学者还对影响充填体强度的因素及程度进行了研究:通过分析全尾砂胶结充填参数并进行单因素五水平设计实验,得到影响充填体强度的主要因子(龄期、料浆浓度和灰砂比)及充填强度关系曲线[6,7];通过研究不同灰砂比下充填体的破坏机理、力学特性及内部水化反应类型,得出灰砂比是控制充填体强度的关键因素,充填体的抗压强度随着灰砂比的增大而增大[8,9,10,11];对充填体损伤特征和机制的研究表明低水泥尾砂的损伤增长率较低,但峰后增长较快[12]。这些研究直观地反映出不同因素对充填体强度的影响,进一步促进了有关充填体损伤的研究。此外,对充填体损伤的影响因素研究已取得较大进展,例如:从能量耗散角度分析了围压与损伤值D的关系及变化规律;不同灰砂配比下充填体的损伤特性及与岩石的合理匹配,得出充填配比与峰值应力损伤值呈正相关,配比越高,峰后增长越慢[13,14,15,16];CPB的化学反应性对耐久性和环境行为的影响[17];循环单轴压缩试验不同状态下的b值特征及加卸载过程中裂隙的变化[18]。一些学者还深入研究了不同骨料对于充填体峰后承载阶段的损伤影响,得出了合理地加入块石有助于减缓损伤变量的增长速率的重要结论[19,20,21]

这些成果对研究充填体损伤因素有着重要作用,但是对于围压和料浆浓度对充填体达到极限破坏强度后损伤变化的研究不足。本文重点对围压和料浆浓度进行探究,从而了解充填体达到极限破坏后的破坏过程,为矿山在实际生产中合理选择充填体料浆浓度提供借鉴。

1 试验准备

1.1 试件制备

本次试验所用试件选用某矿全尾砂和32.5型号水泥制备。参照相关资料,制备过程选取矿山充填体料浆浓度为66%、70%和74%,围压为0.4,0.7,1.0 MPa,试件规格为(高×径)100 mm×50 mm,试件参数配比如表1所示,浇筑过程如图1(a)所示。

表1   试件参数配比

Table 1  Parameter ratio of specimen

充填材料

试件

编号

灰砂比养护龄期/d料浆浓度/%围压/MPa
水泥全尾砂Q-4-21∶828660.7
水泥全尾砂Q-4-31∶828661.0
水泥全尾砂Q-5-11∶828700.4
水泥全尾砂Q-5-21∶828700.7
水泥全尾砂Q-5-31∶828701.0
水泥全尾砂Q-6-11∶828740.4
水泥全尾砂Q-6-21∶828740.7
水泥全尾砂Q-6-31∶828741.0

新窗口打开| 下载CSV


1.2 试验设备

本次试验在江西省矿业工程重点实验室的RMT-150C型液压力机上完成,如图1所示。该压力机主要由液压动力源、计算机、传感器和试验机主体等部分组成,通过电脑设置参数来控制操作,试验过程采用力(小)—位移控制,加载速率为0.002 mm/s,经单轴压缩后试件如图1(c)所示。

图1

图1   试件制作和试验流程

Fig.1   Specimen fabrication and test process


2 胶结充填体损伤力学分析

通过在RMT-150C型液压力机上进行充填体单轴压缩试验之后,得到3组不同料浆浓度下应力—应变曲线(图2)和3组不同围压条件下应力—应变曲线(图3)。为了减少试验外其他因素对试验数据的影响,把试件看作是在同一试验状态下进行制备及养护,根据Lemaitre应变等价原理可以得出:

σ=Eε1-D

式中:σ为全尾砂胶结充填体的有效应力值;E为全尾砂胶结充填体弹性模量;ε为全尾砂胶结充填体应变值;D为全尾砂胶结充填体损伤值。

根据图2尾砂胶结充填体在不同灰砂比下应力—应变曲线,得出在峰值应力之前(εεPεP为峰值应变)充填体试件处于弹性和屈服阶段,此时损伤值为

D=Aεβ

式中:Aβ为材料常数。

联立式(1)和式(2)得出全尾砂充填体峰前损伤本构方程为

σ=Eε-EAεβ+1

2和图3为不同料浆浓度和不同围压下的应力—应变曲线(εPεεuεu为最大应变值),应力—应变关系符合Mazars对混凝土强度试验的阐述,随着应变增加,应力呈指数下降。该阶段的损伤值为

D=DP+1-exp-Bε-εP

式中:DP为临界损伤值。

联立式(1)和式(4)得出全尾砂充填体峰后损伤本构方程为

σ=-EDPε+Eεexp-Bε-εP

式中:β=σP/EεP-σPA=1/εPβ+βεPβB=-lnDP/εu-εP

将得出的不同料浆浓度和不同围压下的6组全尾砂充填体应力—应变数据代入上述公式中,计算出损伤参数βAB,得出充填体在达到峰值应力前后的损伤值表达式各项数值如表2所示。由图2可知,在一定围压下,随着料浆浓度的增大,试件的峰值极限先减小后升高,且试件的应力增长速率也是先减小后增大,料浆浓度分别为66%、70%和74%的3组试件峰值应力分别为1.927,1.639,2.507 MPa;由图3可知,围压增大加强了充填体抵抗破坏的能力,峰值极限应力明显增大,但当围压增大到一定程度时,充填体的峰值应力下降,可知当充填体在横向所受到的围岩挤压足够大时,充填体自身强度低于围压造成了充填体的破坏,此时应提高充填体的强度。

表2   充填体试件特征参数

Table 2  Characteristic parameters of backfill specimen

试件编号料浆浓度/%E/MPaσP/MPaεP/εεu/εβADPB
Q-4-2661991.4010.01010.03292.30111 842.8690.30352.368
Q-4-3664151.9270.00680.03002.15314 719.3690.31749.519
Q-5-170700.8840.01600.03813.7441 121 237.1280.21170.403
Q-5-2702381.9530.01150.02992.49119 407.2410.28668.031
Q-5-3701861.6390.01090.03714.22036 699 402.5000.19262.987
Q-6-1741130.8560.00940.03493.3321 311 592.3780.23157.464
Q-6-2744612.6070.00780.02922.63799 620.2480.27560.326
Q-6-3743302.5070.00990.02853.299953 328.8340.23378.318

新窗口打开| 下载CSV


图2

图2   不同料浆浓度下的应力—应变曲线

Fig.2   Stress-strain curves under different slurry concentrations


图3

图3   不同围压下的应力—应变曲线

Fig.3   Stress-strain curves under different confining pressures


3 围压对充填体损伤的影响

结合表3和单轴压缩试验数据,得出充填体料浆浓度分别为70%和74%时不同围压下的损伤值—应变曲线(图4)。由图4(a)可知,料浆浓度为70%的充填体在围压为0.4,0.7,1.0 MPa时,峰值极限对应的损伤值分别为0.2111、0.2860和0.1920,峰值极限变化呈现先增大后减小的趋势。当围压从0.4 MPa增加至0.7 MPa时,试件的损伤值明显增大,且更先达到峰值极限(峰值应变从0.0160减小至0.0115),峰后损伤增长曲线与围压为0.4 MPa时大致相似。随着围压的继续增大,试样的损伤值降低,且峰值应变大致相同(0.0115和0.0109)。分析峰后曲线走势原因:当料浆浓度为70%时,充填材料内部空隙发育,围压增大,缩短了充填体弹性变形阶段,更早达到屈服极限,并且提高了充填材料自身抵抗破坏的能力,峰值损伤值增大,随着围压继续增大,充填材料横向挤压破坏,此时提前达到屈服极限,损伤值降低。由图4(b)可知,对于料浆浓度为74%的充填体,3种围压的损伤值分别为0.235、0.275和0.233,峰值极限变化同样呈现先增大后减小的趋势。当围压从0.4 MPa增加至0.7 MPa时,峰值极限出现稍早(峰值应变从0.0094减小至0.0078)。之后当围压增大至1 MPa时,峰值损伤值回落,大致等于围压为0.4 MPa时的峰值,但峰后荷载阶段,损伤值逐渐上升,此时不同围压下3组损伤值—应变曲线变化趋势接近。由此可知,当料浆浓度为70%时,增大围压将先促进充填体损伤,之后抑制损伤,但继续增大料浆浓度,充填体强度增加,围压对充填体的影响变小。因此,矿山可根据实际地压选取适宜的料浆浓度。

表3   试件极限破坏峰值前后损伤关系式

  Damage relationship before and after peak

试件编号试件峰前损伤关系试件峰后损伤关系
Q-4-2D=11842.869ε2.301D=1.303-exp[-52.368ε-0.0101]
Q-4-3D=14719.369ε2.153D=1.317-exp[-49.519ε-0.0068]
Q-5-1D=1121237.128ε3.744D=1.211-exp[-70.403ε-0.0160]
Q-5-2D=19407.241ε2.491D=1.286-exp[-68.031ε-0.0115]
Q-5-3D=36699402.5ε4.220D=1.192-exp[-62.987ε-0.0109]
Q-6-1D=1311592.378ε3.332D=1.231-exp[-57.464ε-0.0094]
Q-6-2D=99620.248ε2.637D=1.275-exp[-60.326ε-0.0078]
Q-6-3D=953328.834ε3.299D=1.233-exp[-78.318ε-0.0099]

新窗口打开| 下载CSV


图4

图4   不同围压下的损伤值—应变曲线

Fig.4   Damage-strain curves under different confining pressures


4 料浆浓度对充填体损伤的影响

结合表3和试验数据得出围压分别为0.7 MPa和1.0 MPa的条件下不同料浆浓度损伤值—应变曲线(图5)。由图5(a)可知,当围压为0.7 MPa时,充填体在3种料浆浓度下峰值极限对应的损伤值分别为0.303、0.286和0.275,整体呈现依次递减趋势。当料浆浓度从66%增大至70%时,试件损伤值减小,达到峰值极限延迟(峰值应变从0.0101增加至0.0115),在峰后损伤阶段,料浆浓度为70%的充填体损伤值逐渐大于料浆浓度为66%的充填体(峰值应变为0.0176时损伤值相等);随着料浆浓度的继续增加,试样峰值极限对应的损伤值降低,但峰值极限提前(峰值应变从0.0115减小至0.0078),峰后承载阶段,料浆浓度为74%的充填体损伤值一直大于料浆浓度为70%的充填体损伤值,且峰后损伤变化曲线与料浆浓度为66%的充填体近似为平行状态;由图5(b)可知,当围压为1.0 MPa时,不同料浆浓度(66%,70%,74%)的峰值极限对应损伤值分别为0.317、0.192和0.233。损伤值整体下降较大(由0.317下降至0.192和0.233),峰值应变增大(由0.0068增加至0.1090和0.0990);峰后载荷阶段,料浆浓度为70%的充填材料损伤值小于料浆浓度为66%的充填体材料,当料浆浓度为74%时,损伤值逐渐增大,应变为0.0253时,损伤值反超料浆浓度为66%的充填体材料。分析峰后曲线走势原因:当围压为0.7 MPa时,增大料浆浓度提高了充填材料的自身强度,抑制峰前损伤增长,但促进了峰后损伤增长,随着料浆浓度的继续增加,损伤值全面提高;当围压为1.0 MPa时,2次提高料浆浓度使充填材料强度增加,同样抑制峰前损伤率,在围压足够大时限制充填材料的横向破坏,使得峰后阶段损伤率也降低,但当料浆浓度为74%时,损伤值逐渐增大,可见此时料浆浓度增大促进了试件的破坏。因此,在矿山充填治理中,当围压为0.7 MPa时,选择料浆浓度为66%;当围压为1.0 MPa时,选择料浆浓度为70%较适宜(按实际比例参考)。

图5

图5   不同料浆浓度下的损伤值—应变曲线

Fig.5   Damage value-strain curve under different slurry concentration


5 结论

(1)结合RMT-150C型液压力机上测得的试件应力—应变曲线与Lemaitre应变等价原理,得到全尾砂胶结充填体的峰前峰后损伤值公式和损伤本构方程。

(2)当料浆浓度一定时,增大围压可缩短充填体弹性变形阶段,更早达到屈服极限,并提高了充填材料自身抵抗破坏的能力,峰值损伤值增加;若继续增大围压,将会使充填材料横向挤压破坏,峰值损伤值降低,但当料浆浓度大于70%时,围压对充填体的影响降低。

(3)当围压一定时,增大料浆浓度可提高充填材料的自身强度,抑制了峰前损伤增长,但促进峰后损伤增长,随着料浆浓度的继续增大,损伤值全面提高;当增大围压时,提高料浆浓度同样抑制峰前损伤率,但与围压一定时不同,增大围压时峰后损伤也受到抑制,继续增大料浆浓度促进了试件的峰后损伤破坏。

参考文献

郭利杰许文远谭钦文.

废石尾砂胶结充填体材料力学特性研究

[J].矿物学报,2010(增):74.

[本文引用: 1]

GuoLijieXuWenyuanTanQinwenet al.

Study on mechanical properties of cemented filling materials with waste rock tailings

[J].Acta Mineralogica Sinica,2010(Supp):74

[本文引用: 1]

李一帆张建明邓飞.

深部采空区尾砂胶结充填体强度特性试验研究

[J].岩土力学,2005266):865-868.

[本文引用: 1]

LiYifanZhangJianmingDengFeiet al.

Experimental study on strength characteristics of tailings cement backfilling at deep-seated mined-out area

[J].Rock and Soil Mechanics2005,266):865-868.

[本文引用: 1]

谢勇何文朱志成.

单轴压缩下充填体声发射特性及损伤演化研究

[J].应用力学学报,2015324):670-676.

[本文引用: 1]

XieYongHeWenZhuZhichenget al.

Study on backfill acoustic emission characteristic and damage evolution under uniaxial compression

[J].Chinese Journal of Applied Mechanics2015324):670-676.

[本文引用: 1]

LemaitreJ.

A continuous damage mechanics model for ductile fracture

[J].Transactions of the Asme Journal of Engineering Materials and Technology19851071):83-89.

[本文引用: 1]

刘志祥刘青灵党义刚.

尾砂胶结充填体损伤软—硬化本构模型

[J].山东科技大学学报(自然科学版),2012312):36-41.

[本文引用: 1]

LiuZhixiangLiuQinglingDangYigang.

On softening-hardening intrinsically constitutive model for damage of tailings-cemented filling body

[J].Journal of Shandong University of Science and Technology (Natural Science)2012312):36-41.

[本文引用: 1]

戴兴国方鑫陈增剑.

良山铁矿全尾砂胶结充填参数的合理选择

[J].黄金科学技术,2015231):74-79.

[本文引用: 1]

DaiXingguoFangXinChenZengjianet al.

Reasonable selection of parameters about full tailings cementation filling of Liangshan iron mine

[J].Gold Science and Technology2015231):74-79.

[本文引用: 1]

付建新杜翠凤宋卫东.

全尾砂胶结充填体的强度敏感性及破坏机制

[J].北京科技大学学报,2014369):1149-1157.

[本文引用: 1]

FuJianxinDuCuifengSongWeidong.

Strength sensitivity and failure mechanism of full tailings cemented backfills

[J].Journal of University of Science and Technology Beijing2014369):1149-1157.

[本文引用: 1]

贺桂成刘永丁德馨.

废石胶结充填体强度特性及其应用研究

[J].采矿与安全工程学报,2013301):74-79.

[本文引用: 1]

HeGuichengLiuYongDingDexinet al.

Strength characteristics of cemented waste rock backfills and its application

[J].Journal of Mining and Safety Engineering2013301):74-79.

[本文引用: 1]

刘志祥李夕兵.

尾砂胶结充填体力学试验及损伤研究

[J].金属矿山,20043411):22-24.

[本文引用: 1]

LiuZhixiangLiXibing.

Mechanics test and damage study on cemented tailing filling

[J].Metal Mine20043411):22-24.

[本文引用: 1]

曹帅宋卫东薛改利.

分层尾砂胶结充填体力学特性变化规律及破坏模式

[J].中国矿业大学学报,2016454):717-722,728.

[本文引用: 1]

CaoShuaiSongWeidongXueGailiet al.

Mechanical characteristics variation of stratified cemented tailing backfilling and its failure modes

[J].Journal of China University of Mining and Technology2016454):717-722,728.

[本文引用: 1]

徐文彬潘卫东丁明龙.

胶结充填体内部微观结构演化及其长期强度模型试验

[J].中南大学学报(自然科学版),2015466):2333-2341.

[本文引用: 1]

XuWenbinPanWeidongDingMinglong.

Experiment on evolution of microstructures and long-term strength model of cemented backfill mass

[J].Journal of Central South University (Science and Technology),2015466):2333-2341.

[本文引用: 1]

GaoRZhouKYangC.

Damage mechanism of composite cemented backfill based on complex defects influence

[J].Materials Science and Materials Engineering2017489):893-904.

[本文引用: 1]

宋卫东汪杰谭玉叶.

三轴加—卸载下分层充填体能耗及损伤特性

[J].中国矿业大学学报,2017465):1050-1057.

[本文引用: 1]

SongWeidongWangJieTanYuyeet al.

Energy consumption and damage characteristics of stratified backfill under triaxial loading and unloading

[J].Journal of China University of Mining and Technology2017465):1050-1057.

[本文引用: 1]

刘志祥李夕兵戴塔根.

尾砂胶结充填体损伤模型及与岩体的匹配分析

[J].岩土力学,2006279):1442-1446.

[本文引用: 1]

LiuZhixiangLiXibingDaiTagenet al.

On damage model of cemented tailings backfill and its match with rock mass

[J].Rock and Soil Mechanics2006279):1442-1446.

[本文引用: 1]

王新民胡一波王石.

超细全尾砂充填配比优化正交试验研究

[J].黄金科学技术,2015233):45-49.

[本文引用: 1]

WangXinminHuYiboWangShiet al.

Orthogonal test of optimization of ultrafine whole-tailings backfill materials

[J].Gold Science and Technology2015233):45-49.

[本文引用: 1]

邓代强高永涛吴顺川.

复杂应力下充填体破坏能耗试验研究

[J].岩土力学,2010313):737-742.

[本文引用: 1]

DengDaiqiangGaoYongtaoWuShunchuanet al.

Experimental study of destructive energy dissipation properties of backfill under complicated stress condition

[J].Rock and Soil Mechanics2010313):737-742.

[本文引用: 1]

AldhafeeriZFallM.

Time and damage induced changes in the chemical reactivity of cemented paste backfill

[J].Journal of Environmental Chemical Engineering201644):4038-4049.

[本文引用: 1]

龚囱李长洪赵奎.

加卸荷条件下胶结充填体声发射b值特征研究

[J].采矿与安全工程学报,2014315):788-794.

[本文引用: 1]

GongCongLiChanghongZhaoKui.

Experimental study on b-value characteristics of acoustic emission of cemented filling body under loading and unloading test

[J].Journal of Mining and Safety Engineering2014315):788-794.

[本文引用: 1]

卓毓龙陈辰曹世荣.

块石对充填体强度特性及损伤演化的影响

[J].黄金科学技术,2016243):76-80.

[本文引用: 1]

ZhuoYulongChenChenCaoShironget al.

Effect of ballast on strength characteristics and damage evolution of filling body

[J].Gold Science and Technology2016243):76-80.

[本文引用: 1]

曹世荣韩建文肖伟晶.

不同骨料含量胶结充填体的应力—应变关系研究

[J].黄金科学技术,2017251):93-97.

[本文引用: 1]

CaoShirongHanJianwenXiaoWeijinget al.

Study on stress-strain relationship of cemented backfillings with different aggregate content

[J].Gold Science and Technology2017251):93-97.

[本文引用: 1]

陈辰卓毓龙曹世荣.

块石含量对充填体残余承载阶段损伤演化影响研究

[J].黄金科学技术,2016244):92-95.

[本文引用: 1]

ChenChenZhuoYulongCaoShironget al.

Research on the influence of stone content on damage evolution of filling body in the residual bearing stage

[J].Gold Science and Technology2016244):92-95.

[本文引用: 1]

/