img

QQ群聊

img

官方微信

  • CN 62-1112/TF 
  • ISSN 1005-2518 
  • 创刊于1988年
高级检索

黄金科学技术, 2023, 31(2): 175-189 doi: 10.11872/j.issn.1005-2518.2023.02.121

关键金属矿产勘查进展专栏

东昆仑驼路沟矿床中钴成矿过程的矿物学示踪

王智琳,1, 张凯1, 许德如2, 邹少浩2, 王宇非1

1.中南大学地球科学与信息物理学院,有色金属成矿预测与地质环境监测教育部重点实验室,湖南 长沙 410083

2.东华理工大学省部共建核资源与环境国家重点实验室,江西 南昌 330013

Mineralogical Fingerprints of Co Metallogenesis in the Tuolugou Deposit,East Kunlun Orogen

WANG Zhilin,1, ZHANG Kai1, XU Deru2, ZOU Shaohao2, WANG Yufei1

1.Key Laboratory of Metallogenic Prediction of Nonferrous Metals and Geological Environment Monitoring, Ministry of Education, School of Geosciences and Info-Physics, Central South University, Changsha 410083, Hunan, China

2.State Key Laboratory of Nuclear Resources and Environment, East China University of Technology, Nanchang 330013, Jiangxi, China

收稿日期: 2022-09-18   修回日期: 2022-12-13  

基金资助: 国家自然科学基金项目“湘东北地区钴铜多金属成矿作用研究”.  41672077
湖南省自然科学基金项目“长沙—平江钴矿带钴的精细成矿过程与富集机制”.  2021JJ30817

Received: 2022-09-18   Revised: 2022-12-13  

作者简介 About authors

王智琳(1984-),女,山西运城人,副教授,从事成因矿物学与矿床地球化学研究工作wangzhilin1025@163.com , E-mail:wangzhilin1025@163.com

摘要

东昆仑是我国西部重要的金、铜、铁、钴、镍多金属成矿带,其中,驼路沟钴(金)矿床是西北地区发现的首例大型独立钴矿床,目前关于该矿床中钴的成矿过程尚存在争议。在详细野外地质调查和岩(矿)相学观察的基础上,结合EPMA和EBSD分析,将驼路沟钴成矿过程划分为喷流沉积期和叠加改造期,喷流沉积期形成了细粒富钴黄铁矿(PyⅠ),叠加改造期包括细粒富钴黄铁矿(PyⅡ)+辉砷钴矿—辉砷镍矿+硫镍钴矿+磁黄铁矿+少量黄铜矿阶段和半自形—他形粗粒贫钴黄铁矿(PyⅢ)+自然金阶段。其中,PyⅠ中钴含量为0.03%~4.86%,PyⅡ中钴含量为0.38%~2.74%,PyⅢ中钴含量为0.03%~0.58%,流体耦合的溶解再沉淀机制是黄铁矿复杂环带的重要形成机制。上述矿物学研究表明:钴在驼路沟矿床中以独立矿物和富钴黄铁矿2种形式赋存,喷流沉积成矿作用和后期构造变形叠加改造作用是驼路沟矿床中钴富集成矿的2个重要过程。

关键词: ; 黄铁矿 ; 辉砷钴矿 ; 富集成矿 ; 驼路沟矿床 ; 东昆仑成矿带

Abstract

The demand for cobalt metals has accelerated due to the increased use of cobalt in high-technology industries,thus the security supply of cobalt ore resources has attracted attention worldwide.Cobalt,as one of the critical metals,is in an acute shortage in China.The East Kunlun Orogen is a significant Au-Cu-Fe-Co-Ni-Pb-Zn polymetallic metallogenic belt in western China.The Tuolugou Co(Au) deposit has great reputation as the first large independent cobalt deposit discovered in the northwestern China,whereas the understanding of the metallogenic process of Co is controversial.By combining EPMA and EBSD analyses,together with the field investigation and detailed microscopic observation,the paper revealed the sedimentary exhalative mineralization and superimposed reworking process responsible for the formation of the Tuolugou deposit.The sedimentary exhalative mineralization formed the fine-grained pyrite(PyⅠ),and the superimposed reworking process consists of two mineralizing stages,i.e.,fine-grained pyrite (PyⅡ)+cobaltite+gersdorffite+siegenite+pyrrhotite+minor chalcopyrite stage and coarse-grained pyrite (PyⅢ)+native Au stage.The three generations of pyrite have different chemical compositions,of which PyⅠ has Co contents ranging from 0.03% to 4.86%,PyⅡ ranging from 0.38% to 2.74% and PyⅢ ranging from 0.03% to 0.58%.The obvious negative correlations of Co with Fe uncover that Co exists in the pyrite lattice by stoichiometric substitution of Fe.These results concluded that Co occurs as either independent minerals(e.g.,cobaltite,gersdorffite and siegenite) or cobaltiferous pyrite in the Tuolugou deposit.The EMPA mappings depict that pyrite has complicated textural and chemical compositions,which suggest that the composite pyrite grains were formed by fluid-mediated coupled dissolution-reprecipitation reactions according to the sharp contact boundaries,the distinct chemical compositions,and the consistent morphology and crystallographic orientation among different generations of pyrite in EBSD inverse maps.In combination with the previous work,it is deduced that both the sedimentary exhalative mineralization and subsequent reworking process contributed Co mineralization in the Tuolugou deposit.This study provides a useful guide for the Co mineral exploration and efficient metallurgy in the eastern Kunlun Orogenic Belt.

Keywords: cobalt ; pyrite ; cobaltite ; enrichment and mineralization ; Tuolugou deposit ; east Kunlun Orogen

PDF (8780KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

王智琳, 张凯, 许德如, 邹少浩, 王宇非. 东昆仑驼路沟矿床中钴成矿过程的矿物学示踪[J]. 黄金科学技术, 2023, 31(2): 175-189 doi:10.11872/j.issn.1005-2518.2023.02.121

WANG Zhilin, ZHANG Kai, XU Deru, ZOU Shaohao, WANG Yufei. Mineralogical Fingerprints of Co Metallogenesis in the Tuolugou Deposit,East Kunlun Orogen[J]. Gold Science and Technology, 2023, 31(2): 175-189 doi:10.11872/j.issn.1005-2518.2023.02.121

金属钴具有耐磨、耐热、高强度和强磁性等性能,因此被广泛应用于航空航天、电池材料、电子电器、超级合金及机械制造等新兴产业领域,对国民经济和国家安全至关重要。随着新能源汽车中钴镍电池的利用,全球钴资源需求量持续增长,钴的安全供给引起高度关注(王登红,2019许德如等,2019翟明国等,2019赵俊兴等,2019王焰等,2020Horn et al.,2021Williams-Jones et al.,2022)。目前,全球钴产量主要来源于(变)沉积岩容矿的铜钴矿床(60%)、与超基性—基性岩有关的岩浆铜镍硫化物矿床(23%)和红土型镍钴矿床(15%)等(Williams-Jones et al.,2022)。除摩洛哥Bou Azzer钴—镍—砷—金—银矿床等少数独立钴矿床外(Ahmed et al.,2009),世界上大部分钴金属与铜、铜—镍、铜—金、铜—铁、镍—银—砷—铋等伴生作为副产品加以利用,独立的工业矿床较为罕见,这与钴的亲铜、亲铁和亲硫的地球化学性质有关。

东昆仑作为我国重要的金、铜、铁、钴和镍多金属成矿带,由西向东产出有肯德可克钴—金—铋矿床、驼路沟钴(金)矿床、督冷沟铜—钴矿床和德尔尼铜—钴矿床等(李厚民等,2001潘彤,2005丰成友等,2006a2006b焦建刚等,2009段俊等,2014张爱奎等,2021),因此是我国重要的钴成矿带。其中,驼路沟钴(金)矿床作为西北地区发现的首例大型独立钴矿床,已探明钴金属储量超过20 000 t,钴品位为0.06%~0.46%;金金属储量为4 t,金品位为0.45×10-6~5.19×10-6丰成友等,2006a2006bFeng et al.,2009)。前人对驼路沟钴(金)矿床开展了地球化学、同位素年代学和同位素示踪研究(李厚民等,2001张德全等,2002a2002b丰成友等,2006a2006bFeng et al.,2009奎明娟等,2019),了解了其成矿构造背景、成矿时代、成矿物质和流体来源。根据石英钠长岩的主微量地球化学特征、锆石SHRIMP和LA-ICPMS U-Pb年龄(468~457 Ma)以及εHf(t)值(-0.61~12.72),认为驼路沟钴(金)矿床源于新生的地壳物质,形成于活动大陆边缘的局限裂陷海盆环境,为远离喷气口的喷气沉积成因(张德全等,2002b丰成友等,2005)。综合黄铁矿的He-Ar-S同位素特征(3He/4He=0.10~0.31 Ra、40Ar/36Ar=302~569、δ34S=-4.5‰~+1.5‰)和黄铁矿的Re-Os年龄(429~442 Ma),以往研究普遍认为该矿床经历了热水喷流沉积成矿作用(张德全等,2002a2002b朱华平,2005丰成友等,2006a2006bFeng et al.,2009)。然而,由于受加里东期和华力西—印支期复合造山作用的影响,区域变质作用发育,韧—脆性构造变形强烈,因此除了喷流沉积成因(丰成友等2006a2006bFeng et al.,2009),还存在层控—改造型(李厚民等,2001)、热水沉积—热液叠加改造型(奎明娟等,2019)和热水喷流沉积—构造改造型(朱华平,2005)等多种观点。上述矿床成因认识的差异主要是由于对含钴矿物的形成及其演化缺乏精细的矿物学约束。

为此,本文在详细野外地质调查和岩(矿)相学观察的基础上,开展了驼路沟矿区含钴矿物的电子探针点、面分析和EBSD分析,查明了钴的赋存形式和产出特征,探讨了钴的成矿富集机制,为东昆仑地区钴矿的下一步找矿勘查以及选冶利用提供理论指导。

1 区域地质概况

东昆仑造山带大地构造位置处于青藏高原东北部、柴达木盆地南缘、中央造山带—秦祁昆褶皱系西端[图1(a)],整体呈EW向展布(Jian et al.,2020Dong et al.,2021),其经历了复杂的多旋回构造演化,包括元古宙基底的形成、早古生代多岛洋演化、晚古生代—早中生代造山阶段和晚中生代—新生代造山阶段(Pan et al.,1996Xia et al.,2015张爱奎等,2021刘永乐等,2022)。以近EW-NWW向展布的昆北断裂、昆中断裂和昆南断裂为界,可将东昆仑造山带进一步划分为昆北带、昆中带和昆南带3个构造单元,其南部为阿尼玛卿带和北巴颜喀拉带[图1(b)]。

图1

图1   东昆仑大地构造位置(a)及区域地质图(b)(修改自丰成友等,2004

NKL.F-昆北断裂;CKL.F-昆中断裂;SKL.F-昆南断裂;NBH.F-北巴颜喀拉断裂;Ⅰ-昆北带;Ⅱ-昆中带;Ⅲ-昆南带;Ⅳ-阿尼玛卿带;Ⅴ-北巴颜喀拉带;1.太古宇;2.中—古元古界;3.新元古界;4.奥陶系;5.泥盆系;6.石炭—二叠系;7.前华力西期花岗岩;8.华力西期花岗岩;9.印支期花岗岩

Fig.1   Tectonic location (a) and regional geological map(b) of the East Kunlun Terrane (modified after Feng et al.,2004


东昆仑地区地层出露广泛,主要有太古宇、古元古界中—深变质岩系,中—新元古界浅变质(火山)碎屑岩—碳酸盐岩建造,奥陶系浅变质碎屑岩夹火山岩和碳酸盐岩建造,泥盆系浅变质碎屑岩—火山岩建造,以及石炭—二叠系浅变质碎屑岩、火山岩和碳酸盐岩等[图1(b)]。其中,昆北带和昆中带出露地层相近,而昆南带与昆北带和昆中带地层存在明显差异(朱华平,2005)。区域构造整体上表现为近EW向展布的昆北、昆中、昆南及北巴颜喀拉主断裂及其次级断裂和褶皱构造系统,断裂带附近片理化带、糜棱岩带发育(潘彤,2005)。区域上岩浆岩发育,以华力西期和印支期中酸性侵入岩为主,零星出露有少量加里东期中酸性岩体,岩体的空间展布方向与区域构造线基本一致[图1(b)]。华力西期中酸性侵入体规模较大,形态不规则,呈岩株和岩基形式产出,而印支期侵入体呈线状复式岩基形式产出。区域火山岩以基性—中酸性火山岩和火山碎屑岩为主,主要产于中—新元古界万保沟群、奥陶系纳赤台群、三叠系洪水川组和鄂拉山组等地层中。区域金属矿产资源类型多样,以喷流—沉积型铜—钴—金—铋矿床、韧性剪切型金矿床、岩浆型铜—镍—钴硫化物矿床和斑岩型—矽卡岩型—岩浆热液型铁—铜—铅矿床为主(张爱奎等,2021)。

2 矿床地质特征

驼路沟钴(金)矿床位于东昆仑造山带之昆南造山带,南部距昆南断裂带3 km[图1(b)]。矿区整体上受轴向近EW向紧闭复式背斜和区域性剪切带控制(图2),并叠加有不同方向的成矿期后脆性断裂。矿区无侵入岩体出露。矿区地层总体走向近EW,倾向N。除第四系以外,出露地层主要是含矿岩系—早古生代奥陶系纳赤台群,其为一套绿片岩相浅变质海相火山碎屑沉积岩建造,自下而上可划分为4个岩性段,矿区仅出露纳赤台群哈拉巴依沟组第二、第三和第四岩性段。其中,第二岩性段碳质千枚岩段主要有斑点状碳质千枚岩、片理化千枚岩、千枚岩化板岩、泥质板岩和粉砂质板岩,其次为变砂岩、灰色(斑点状)变粉砂岩及少量泥质灰岩等;第三岩性段千枚岩段主要有石英钠长岩(锆石U-Pb年龄为468~457 Ma;丰成友等,2005)、绿泥石绢云母石英片岩、绢云母石英片岩、(糜棱岩化)千枚岩和糜棱岩等。第四岩性段砂板岩段主要有灰色变中细粒长石石英砂岩、变长石砂岩、绢云母千枚状板岩、变粉砂岩和钙质粉砂岩等(李厚民等,2000张德全等,2002b)。

图2

图2   驼路沟矿床地质简图(修改自奎明娟等,2019

1.第四系;2.纳赤台群哈拉巴依沟组第二岩性段:斑点状碳质千枚岩、板岩夹粉砂岩、薄层灰岩纳赤台群;3.纳赤台群哈拉巴依沟组第三岩性段:绿泥绢云石英片岩、石英片岩和石英钠长岩;4.纳赤台群哈拉巴依沟组第四岩性段:绿泥绢云母石英片岩、变砂砾岩和石英钠长岩;5.大理岩透镜体;6.花岗斑岩;7.石英钠长岩带;8.矿化蚀变带及编号;9.钴矿体及编号;10.金矿化体;11.韧性剪切带;12.背斜轴;13.向斜轴;14.镜铁矿化;15.勘探线

Fig.2   Simplified geological map of the Tuolugou deposit(modified after Kui et al.,2019


钴、金矿体产于南北2条韧性剪切构造蚀变带内(图2)。其中,位于背斜南翼的南矿带矿体呈似层状和透镜状,为近EW向展布于纳赤台群哈拉巴依沟组第三岩性段中(图3),含矿岩系主要为石英钠长岩、绿泥石绢云母石英片岩和绢云母石英片岩[图4(a)~4(c)],矿体整体上受近EW向长征沟—短沟韧性剪切带控制,矿石糜棱岩化特征明显[图4(d)];北矿带呈近EW向分布于背斜北翼第四岩性段内,明显受断裂控制[图4(e)],北矿带常见含星点状黄铁矿的变石英砂岩角砾被镜铁矿胶结[图4(f)]或矿化的变石英砂岩被晚期镜铁矿脉切穿[图4(g)]。矿区矿石类型包括黄铁矿矿石和镜铁矿黄铁矿矿石,矿石结构主要为交代、自形—半自形粒状、他形粒状和压碎等,构造为块状、条带状、浸染状、脉状和角砾状等。矿石矿物以黄铁矿和镜铁矿为主,其次为辉砷钴矿—辉砷镍矿、硫镍钴矿、黄铜矿、磁铁矿、白铁矿、磁黄铁矿、闪锌矿、方铅矿和自然金等;脉石矿物主要有石英、钠长石、碳酸盐矿物、绢云母和绿泥石等。矿区围岩蚀变发育,远矿端围岩表现为青磐岩化,近矿端围岩主要为硅化、钠长石化、绢云母化、碳酸盐化和黄铁矿化[图4(h)],不同蚀变具有过渡渐变的特点,整体上矿体规模与矿化蚀变的强度成正比(丰成友等,2006b)。

图3

图3   驼路沟矿床108勘探线剖面图(修改自奎明娟等,2019

1.石英钠长岩;2.绿泥石绢云母石英片岩;3.矿体及编号;4.平硐;5.钻孔;6.矿种(矿体)的平均品位/真厚度

Fig.3   Simplified section of No.108 exploration line of the Tuolugou deposit(modified after Kui et al.,2019


图4

图4   驼路沟矿床南、北矿带典型矿石和围岩蚀变矿化特征

(a)南矿带短沟钴矿体产状较陡,围岩为石英钠长岩和绿泥石千枚岩;(b)南矿带黄铁矿化的石英钠长岩;(c)细粒黄铁矿呈浸染状分布在条带状石英钠长岩中;(d)糜棱岩化的钴矿石;(e)北矿带破碎带中的含钴镜铁矿矿体;(f)北矿带镜铁矿矿石,可见片状镜铁矿呈揉皱状胶结含浸染状黄铁矿的变石英砂岩角砾;(g)北矿带镜铁矿脉切穿含钴变石英砂岩;(h)硅化和菱铁矿化含自然金矿石;Py-黄铁矿;Qtz-石英;Spc-镜铁矿;Ab-钠长石;Sd-菱铁矿

Fig.4   Features of ores and alteration mineralization of surrounding rock from the southern and northern ore belts in the Tuolugou deposit


3 样品分析方法

分析样品采自驼路沟矿区南矿带的短沟矿段和北矿带,为黄铁矿化石英钠长岩、黄铁矿化千枚岩、块状黄铁矿矿石和镜铁矿—黄铁矿矿石。基于详细的岩(矿)相学观察,选择代表性的样品开展电子探针(EPMA)点分析和面扫描分析,并对典型黄铁矿颗粒进行电子背散射衍射(EBSD)分析。

电子探针试验工作在中南大学有色金属成矿预测与地质环境监测教育部重点实验室完成,仪器型号为配备有四通道波谱仪的SHIMADZU EPMA-1720,同时装载有EDAX能谱仪。点分析元素包括S、Fe、Co、Ni、As、Se、Pb和Sb,分析结果采用ZAF校正。点分析试验条件:加速电压为15 kV、电流为20 nA、束斑直径为1 μm。面扫描分析元素为Co、As和Ni,面扫描试验条件:加速电压为15 kV,电流为60 nA,束斑直径为1 μm,点采样时间为20 ms,步径为1 μm,图像最大分辨率为704 pixel×380 pixel。

电子背散射衍射工作在中国地质大学(武汉)地质过程与矿产资源国家重点实验室完成,仪器为配备Oxford Instruments HKL Nordlys II EBSD探头的FEI Quanta 450场发射扫描电子显微镜。试验操作条件如下:加速电压为20 kV,真空度为20~60 Pa,工作距离为25 mm;晶体取向分析条件:电流为5 nA,采样步径为0.28~1.00 μm。物相分布图和反极图由Channel 5软件TangoTM模块处理而成。

4 结果分析

4.1 硫化物矿物学特征

通过详细的野外和显微岩(矿)相学观察,将驼路沟矿床成矿过程划分为喷流沉积期和叠加改造期。喷流沉积期硫化物主要为浸染状细粒黄铁矿(PyⅠ),与石英、钠长石共生,PyⅠ往往呈自形粒状[图5(a)],颗粒内部见韵律震荡环带结构[图5(b)]。叠加改造期矿石糜棱岩化特征明显[图4(d)],硫化物和脉石矿物均具有明显的定向排列[图5(c)、5(d)],局部硫化物还可见重结晶现象,硫化物矿物共生组合为自形—半自形细粒状富钴黄铁矿(PyⅡ)+辉砷钴矿—辉砷镍矿+硫镍钴矿+少量磁黄铁矿+少量黄铜矿[图5(c)~5(g)],与石英、钠长石、白云母和绢云母等共生。其中,辉砷钴矿和硫镍钴矿颗粒大小为0.05~0.20 mm,自形程度较高,辉砷钴矿和硫镍钴矿颗粒较干净,不发育孔洞。PyⅡ呈自形—半自形粒状[图5(g)],或呈不规则状和环带状交代早期的PyⅠ,使得黄铁矿形成复杂的结构,如环带结构[图5(e)]和“核—边”结构[图5(f)]等。此外,剪切变形的钴矿石还表现出晚期硅化和菱铁矿化叠加蚀变特征[图4(h)],该阶段矿物共生组合为石英+菱铁矿+黄铁矿(PyⅢ)+自然金阶段[图5(h)、5(i)],相比PyⅠ和PyⅡ,PyⅢ颗粒明显较大,为0.02~2.00 mm,为半自形—他形粗粒状,碎裂结构发育,沿裂隙见赤铁矿交代并有自然金分布[图5(i)],可能形成于晚期的脆性变形阶段。

图5

图5   驼路沟矿床硫化物的矿物学特征

(a)PyⅠ呈自形—半自形粒状产出,反射光;(b)细粒PyⅠ的韵律环带结构,为伽玛增强的反射图像;(c)~(d)糜棱岩化矿石中硫化物矿物具明显的定向排列,其中(c)为透射正交偏光,(d)为反射光;(e)辉砷钴矿与富钴的PyⅡ交代了贫钴的PyⅠ,为伽玛增强的反射图像;(f)由PyⅠ、PyⅡ和PyⅢ这3个世代黄铁矿组成的复合黄铁矿颗粒,PyⅠ孔洞和包裹体发育,PyⅡ和PyⅢ交代或增生于PyⅠ边部,为伽玛增强的反射图像;(g)自形硫镍钴矿与富钴黄铁矿PyⅡ共生,反射光;(h)~(i)半自形—他形粗粒PyⅢ,裂隙发育,裂隙间可见自然金,赤铁矿沿裂隙交代;Py-黄铁矿;Cbt-辉砷钴矿;Sig-硫镍钴矿;Mus-白云母;Ccp-黄铜矿;Au-自然金;Hem-赤铁矿

Fig.5   Mineralogical characteristics of sulfides in the Tuolugou deposit


4.2 电子探针分析结果

针对3个世代的黄铁矿开展了电子探针化学成分分析,共计41个分析点,其中PyI测点21个、PyⅡ测点10个、PyⅢ测点10个,分析结果见表1。此外,选择3个具有环带结构的黄铁矿颗粒开展了电子探针面扫描分析。

表1   驼路沟矿床中黄铁矿的电子探针化学成分分析结果

Table 1  Analysis results of chemical compositions of pyrite in Tuolugou deposit by EPMA(%)

矿物世代样品编号元素总含量
SFeCoNiAsSePbSb
PyⅠ13D3J0953.4444.291.900.360.12--0.01100.12
13D3J0853.2044.761.860.230.100.01-0.01100.17
13D3J1253.5045.111.670.280.10---100.66
13D3J1352.4046.560.960.090.34-0.04-100.39
N80353.4741.534.860.350.320.01-0.01100.55
N80451.6345.371.080.460.22-0.020.0198.79
N80553.1642.684.220.130.260.01-0.01100.47
N80753.6742.783.830.050.390.020.07-100.81
N81153.0541.984.590.130.30---100.05
N80252.7146.390.070.710.210.02--100.11
14D11952.1147.360.030.010.35---99.86
14D11352.5647.480.050.040.100.010.03-100.27
14D10953.1447.060.120.240.200.03--100.79
13D1-1-153.0747.000.160.030.19---100.45
13D1-1-253.1847.260.130.060.240.020.020.02100.93
13D1-1-353.2147.390.150.010.22-0.01-100.99
13D1-1-453.1546.700.330.130.21-0.04-100.56
13D3J0152.9847.510.05-0.290.020.01-100.86
13D3J0353.4447.200.050.030.20---100.92
13D3J0752.7047.480.06-0.26-0.060.02100.58
13D3JB150.3244.560.861.463.26---100.46
PyⅡ13D3J0052.7247.030.380.090.38-0.02-100.62
13D3J1152.4146.880.680.070.180.01--100.23
14D11752.7345.102.100.270.140.03--100.37
14D11552.8044.971.960.240.130.01-0.01100.12
14D12052.4445.391.800.260.110.020.03-100.05
14D11652.5845.671.090.190.100.010.010.0199.66
14D1653.1243.792.740.330.220.01--100.21
14D11054.2444.511.440.330.180.02-0.02100.74
14D11253.0745.011.510.330.19---100.11
14D11852.8845.980.960.190.130.020.03-100.19
PyⅢTLG8DA352.7146.770.47-0.47-0.040.01100.47
TLG8DA353.0946.880.12-0.23--0.02100.34
TLG8DA354.2345.430.120.640.17-0.05-100.64
TLG8DA353.8846.010.220.230.18-0.02-100.54
TLG8DA353.8945.860.580.100.38-0.020.01100.84
TLG8DA353.2546.710.240.270.22--0.03100.72
TLG12D151.6846.890.200.140.210.01--99.13
TLG12D153.3746.060.030.030.830.010.050.01100.39
TLG16D153.6646.750.090.030.19-0.010.01100.74
TLG17D252.2646.470.380.210.18-0.06-99.56

注:“-”表示低于检出限

新窗口打开| 下载CSV


电子探针点分析结果表明,PyⅠ中铁含量[w(Fe)]变化范围在41.53%~47.51%之间(平均值为45.64%),硫含量[w(S)]范围为50.32%~53.67%(平均值为52.86%),钴含量[w(Co)]为0.03%~4.86%(平均值为1.29%),镍含量[w(Ni)]在1.46%以下(平均值为0.25%),砷含量[w(As)]为0.10%~3.26%(平均值为0.38%)。相比之下,PyⅡ中砷含量[w(As)]变化范围较小,为0.10%~0.38%,平均值为0.18%,钴含量[w(Co)]变化范围为0.38%~2.74%(平均值为1.47%)(图6),镍含量[w(Ni)]变化范围变化不大,为0.07%~0.33%(平均值为0.23%)。PyⅢ中铁含量[w(Fe)]为45.43%~46.89%(平均值为46.38%),硫含量[w(S)]为51.68%~54.23%(平均值为53.20%),钴含量[w(Co)]为0.03%~0.58%(平均值为0.25%),镍含量[w(Ni)]在0.64%以下(平均值为0.21%),砷含量[w(As)]为0.17%~0.83%(平均值为0.31%)。不同世代黄铁矿中的钴与铁含量表现出明显的负相关性[图7(a)],而由于砷含量较低,其与硫的负相关性不显著[图7(b)]。

图6

图6   不同世代黄铁矿的元素含量箱线图

Fig.6   Box diagram of element contents of pyrite from different generations


图7

图7   驼路沟矿床黄铁矿的元素相关性图解

注:图(c)中变质成因和热液成因富钴黄铁矿数据分别来自Wang et al.(2015)Wang et al.(2022c);其余数据修改自卢宜冠等(2021)

Fig.7   Plot of the EMPA analyses of pyrite in the Tuolugou deposit


电子探针元素面扫描分析结果显示驼路沟黄铁矿颗粒具有复杂的环带结构(图8)。其中,图8(a)中的黄铁矿颗粒表现为清晰的韵律环带,是由低钴和高钴的震荡环带构成;图8(b)中的黄铁矿则是由PyⅠ和PyⅡ组成,PyⅠ由低钴和高钴震荡韵律环带构成,边部PyⅡ环带特征不甚发育,具有相对均一的Co含量变化范围。同样,图8(c)中的黄铁矿颗粒由PyⅠ和PyⅡ组成,PyⅠ环带清晰,相比PyⅡ较均一但具有整体高的Co含量。

图8

图8   驼路沟矿床黄铁矿的电子探针元素面扫描图像

Fig.8   EPMA element surface scanning image of pyrite in the Tuolugou deposit


4.3 黄铁矿EBSD分析结果

针对2个具环带结构的黄铁矿颗粒,开展了电子背散射衍射试验。试验结果表明,不论黄铁矿颗粒由2个还是3个世代构成,整个黄铁矿颗粒在EBSD反极图中均展示了一致的晶体取向(图9)。

图9

图9   驼路沟矿床黄铁矿的EBSD相图(a)和反极图(b)

Fig.9   EBSD phase(a) and inverse pole maps(b) of pyrite in the Tuolugou deposit


5 讨论

5.1 含钴黄铁矿的形成机制

Co2+离子半径为0.75 Å(高自旋态),与Fe2+离子半径(0.78 Å)接近,易于替代Fe2+的位置进入黄铁矿晶格(Williams-Jones et al.,2022)。因此,除了独立的含钴矿物,黄铁矿是很多类型钴矿床(如沉积岩容矿型、热液型、沉积喷流型、IOCG型和矽卡岩型等)中重要的载钴矿物(Ahmed et al.,2009Lund et al.,2011Slack,2012Scharrer et al.,2019)。详细的矿相学观察和电子探针分析表明,驼路沟矿床中钴的赋存形式包括2种:一是独立含钴矿物,如辉砷钴矿—辉砷镍矿和硫镍钴矿等;二是含钴黄铁矿。驼路沟矿床黄铁矿中钴与铁具有明显的负相关性[图7(a)],表明Co2+主要以晶格替代Fe2+的方式赋存在黄铁矿中。

矿物学研究表明驼路沟含钴黄铁矿结构和成分并不均匀,表现为晚世代黄铁矿以韵律环带、补丁状和不规则状的形式交代早世代黄铁矿,这与部分热液型和沉积(—变质)型(含)钴矿床中黄铁矿的特征一致(Michel et al.,1994Wang et al.,20152022c王宇非等,2021)。这些复杂的结构和成分变化可以指示黄铁矿的形成条件、沉淀环境及成因(Fougerouse et al.,20162021Large et al.,2009Wu et al.,2021)。黄铁矿不同世代之间突变的化学成分及截然的接触界线和EBSD图中几乎一致的晶体取向(图9),暗示着驼路沟矿床中黄铁矿的复杂结构是由溶解再沉淀反应形成的(Putnis,2009Qian et al.,2011Borg et al.,2014Altree-Williams et al.,2015)。

驼路沟PyⅠ的钴含量[w(Co)]变化范围为0.03%~4.86%(平均值为1.29%),镍含量[w(Ni)]小于等于1.46%(平均值为0.25%),钴、镍含量变化范围较大,但明显高于富钴矽卡岩型矿床中黄铁矿的钴和镍含量[w(Co)和w(Ni)平均值分别为0.16%和0.11%](Wang et al.,2022a)。PyⅠ的Co/Ni比值为0.10~76.60(平均值为11.72),大部分大于1,在Ni-Co图解中散点范围较广[图7(c)],部分落在VMS和沉积成因黄铁矿范围,部分落在变质成因范围。结合矿体产出特征及其与石英钠长岩的紧密空间关系和黄铁矿的He-Ar-S同位素特征(张德全等,2002a2002b朱华平,2005丰成友等,2006a2006b),暗示着PyⅠ为喷流沉积成因(Bralia et al.,1979Dill et al.,1989),变质成因范围的部分散点可能与PyⅠ形成于富钴环境有关(Wang et al.,2022c),这也间接暗示了需谨慎使用此判别图解,可能还需更多的含钴黄铁矿数据来进一步完善。相比之下,PyⅡ的钴含量[w(Co)]范围为0.38%~2.74%(平均值为1.47%),镍含量[w(Ni)]范围为0.07%~0.33%(平均值为0.23%),Co/Ni比值为4.22~9.71(平均值为6.48),PyⅢ的钴、镍含量明显降低,Co/Ni比值为0.19~5.80(平均值为1.88)。由此可知,PyⅡ和PyⅢ的Co/Ni比值较PyⅠ变化范围明显变小,在Ni-Co图解中与已发表的变质成因的富钴黄铁矿范围一致[图7(c)]。结合PyⅡ强烈的剪切变形特征(如具有定向排列、细粒化和重结晶特征)[图5(c)~5(g)]和均一结构,PyⅡ最可能为剪切变形的产物。同理,PyⅢ虽不具备剪切变形特征,但其破碎结构发育且粒度明显变大,暗示着其可能形成于更晚的脆性变形阶段。

然而,相对于江南造山带典型的钴矿床,如湖南井冲钴铜多金属矿床中黄铁矿钴含量高达13.66%,海南石碌铁钴铜多金属矿床中黄铁矿钴含量高达9.19%,且富钴黄铁矿中Co与As多表现出良好的耦合关系(Wang et al.,20152022c),驼路沟矿床中黄铁矿的钴含量[w(Co)=0.03%~4.86%]明显偏低,且与As元素无相关性。这种差异可能与不同围岩性质、水岩反应程度以及成矿流体物理化学条件等因素有关(Clark et al.,2004Large et al.,2007Deditius et al.,2008Barrie et al.,2009Wang et al.,2022b)。

5.2 驼路沟矿床中钴的成矿富集过程

钴作为亲铜、亲铁元素往往倾向于富集在地幔中,各种地质过程,如红土风化、成岩作用、岩浆作用和热液活动等可以导致钴在地壳中的富集(Pan et al.,2000Slack,2012Griffin et al.,2013Zheng et al.,2016Vasyukova et al.,2022Wang et al.,2022c)。野外工作发现,受区域动力变质作用影响,驼路沟矿区围岩发生强烈的构造置换,糜棱岩化特征明显[图4(a)、4(c)],矿体发生强烈剪切变形,在走向和倾向上均显示斜列展布和波状弯曲的特征,受韧性剪切带控制明显(图3)。关于驼路沟矿床中钴的成矿过程,以往研究根据石英钠长岩钴和金含量高(分别高达283×10-6和125×10-6)以及成矿年龄429~442 Ma(黄铁矿的Re-Os年龄)与围岩沉积时限接近(张德全等,2002b丰成友等,2005)等,普遍认为昆南构造带于晚奥陶—早志留世发生裂解,钴主要形成于同生喷流沉积过程(Feng et al.,2009)。

然而,关于印支期是否叠加了钴矿化的认识尚不明确。有的观点认为强烈的变形改造作用仅对矿体形态有明显的改造,使矿体呈现出“似层非层、似脉非脉”的特点,并未导致新的成矿作用发生(朱华平,2005);有的观点则认为在热水喷流沉积成矿的基础上,在印支期叠加了热液矿化(李厚民等,2000张德全等,2002a2002b)。在矿物学方面,李厚民等(2001)将矿区黄铁矿划分为2个世代,早世代黄铁矿为半自形—他形,钴含量[w(Co)]为2.06%~2.38%,晚世代黄铁矿经历了重结晶,钴含量较低(0.06%),与少量方硫镍钴矿共生。

本文通过详细的矿物学研究,发现了2类富钴黄铁矿,即PyⅠ和PyⅡ,后期变质变形改造期的PyⅡ往往呈不规则状、丝带状或环带状交代喷流沉积期PyⅠ,且PyⅡ与辉砷钴矿—辉砷镍矿、硫镍钴矿等独立矿物共生,这一结果说明后期变形变质作用对驼路沟矿床中钴的成矿具有重要的富集作用。此外,还发现自然金分布于具破碎结构的粗粒Py裂隙中[图5(i)],暗示着后期改造作用同样导致金的富集。后期叠加改造作用对钴富集的影响在其他含钴矿床中也较为常见,如中非铜矿带作为世界上最大的沉积岩容矿型铜钴成矿省普遍被认为经历了Lufilian同造山改造富集作用(El Desouky et al.,2009),造山期变质热液成因黄铁矿和磁黄铁矿中的钴含量分别高达4.6%和1.5%(卢宜冠等,2021);我国中条山地区沉积岩容矿型的铜钴矿床同样遭受了变形变质改造作用,叠加成矿作用形成了辉砷钴矿、硫镍钴矿和含钴黄铁矿[w(Co)=2%~5%]等富钴矿物组合(Qiu et al.,2021),这一矿物组合与驼路沟矿床叠加改造期硫化物组合一致。因此,除了喷流沉积成矿外,后期构造变形叠加改造作用也是驼路沟矿床中钴成矿富集的重要过程。

6 结论

(1)驼路沟矿床中钴以2种形式存在:一种是独立矿物辉砷钴矿—辉砷镍矿和硫镍钴矿,另一种是以类质同象形式赋存于富钴黄铁矿中。

(2)驼路沟矿床中黄铁矿表现出复杂的结构和化学组成变化,PyⅡ常呈不规则状和环带状交代PyⅠ,PyⅠ的钴含量为0.38%~4.86%,PyⅡ的钴含量为0.38%~2.74%,复杂结构的形成机制为流体耦合的溶解再沉淀反应。

(3)喷流沉积成矿作用和后期构造变形叠加改造作用是驼路沟矿床中钴富集成矿的2个重要过程。

http://www.goldsci.ac.cn/article/2023/1005-2518/1005-2518-2023-31-2-175.shtml

参考文献

Ahmed A HArai SIkenne M2009.

Mineralogy and paragenesis of the Co-Ni arsenide ores of Bou Azzer,Anti-Atlas,Morocco

[J].Economic Geology,1042):249-266.

[本文引用: 2]

Altree-Williams APring ANgothai Yet al2015.

Textural and compositional complexities resulting from coupled dissolution-reprecipitation reactions in geomaterials

[J].Earth-Sci-ence Reviews,15628-651.

[本文引用: 1]

Barrie C DBoyce A JBoyle A Pet al2009.

Growth controls in colloform pyrite

[J].American Mineralogist,944):415-429.

[本文引用: 1]

Borg SLiu WPearce Met al2014.

Complex mineral zoning patterns caused by ultra-local equilibrium at reaction interfaces

[J].Geology,42415-418.

[本文引用: 1]

Bralia ASabatini GTroja F1979.

A revaluation of the Co/Ni ratio in pyrite as geochemical tool in ore genesis problems

[J].Mineralium Deposita,143):353-374.

[本文引用: 1]

Clark CGrguric BMumm A S2004.

Genetic implications of pyrite chemistry from the Palaeoproterozoic Olary Domain and overlying Neoproterozoic Adelaidean sequences,northeastern South Australia

[J].Ore Geology Reviews,253/4):237-257.

[本文引用: 1]

Deditius A PUtsunomiya SRenock Det al2008.

A proposed new type of arsenian pyrite:Composition,nanostructure and geological significance

[J].Geochimica et Cosmochimica Acta,7212):2919-2933.

[本文引用: 1]

Dill H GBotz R1989.

Lithofacies variation and unconformities in the metalliferous rocks underlying the Permian Kupferschiefer of the Stockheim Basin,Federal Republic of Germany

[J].Economic Geology,845):1028-1046.

[本文引用: 1]

Dong YSun SSantosh Met al2021.

Central China orogenic belt and amalgamation of East Asian continents

[J].Gondwana Research,100131-194.

[本文引用: 1]

Duan JunQian ZhuangzhiHuang Xifenget al2014.

Characteristics of ore minerals of De’erni Cu (Co) deposit in Qinghai and their geological significance

[J].Journal of Earth Sciences and Environment,361):201-209.

El Desouky H AMuchez PCailteux J2009.

Two Cu-Co sulfide phases and contrasting fluid systems in the Katanga copper belt,Democratic Republic of Congo

[J].Ore Geology Reviews,36315-332.

Feng C YQu W JZhang D Qet al2009.

Re-Os dating of pyrite from the Tuolugou stratabound Co (Au) deposit,eastern Kunlun Orogenic Belt,northwestern China

[J].Ore Geology Reviews,36213-220.

[本文引用: 5]

Feng ChengyouZhang DequanDang Xingyanet al2005.

SHRIMP zircon U-Pb dating of quartz albitite from the Tuolugou cobalt (gold) deposit,Golmud,Qinghai,China—Constraints on the age of the Naij Tal Group

[J].Geological Bulletin of China,246):501-505.

Feng ChengyouZhang DequanQu Wenjunet al2006a.

Re-Os isotopic dating of pyrite in the Tuolugou SEDEX cobalt (gold) deposit,Golmud,Qinghai Province

[J].Acta Geologica Sinica,804):571-576.

Feng ChengyouZhang DequanShe Hongquanet al2006b.

Tectonic setting and metallogenic mechanism of Tuolugou cobalt (gold) deposit,Qinghai Province

[J].Mineral Deposits,255):544-561.

Feng ChengyouZhang DequanWang Fuchunet al2004.

Multiple orogenic processes and geological characteristics of the major orogenic gold deposits in east Kunlun Area,Qinghai Province

[J].Acta Geoscientica Sinica,254):415-422.

[本文引用: 1]

Fougerouse DMicklethwaite STomkins A Get al2016.

Gold remobilisation and formation of high grade ore shoots driven by dissolution-reprecipitation replacement and Ni substitution into auriferous arsenopyrite

[J].Geochimica et Cos-mochimica Acta,178143-159.

[本文引用: 1]

Fougerouse DReddy S MAylmore Met al2021.

A new kind of invisible gold in pyrite hosted in deformation-related dislocations

[J].Geology,4910):1225-1229.

[本文引用: 1]

Griffin W LBegg G CO’reilly S Y2013.

Continental-root control on the genesis of magmatic ore deposits

[J].Nature Geoscience,611):905-910.

[本文引用: 1]

Horn SGunn A GPetavratzi Eet al2021.

Cobalt resources in Europe and the potential for new discoveries

[J].Ore Geology Reviews,130103915.

[本文引用: 1]

Jian XWeislogel APullen Aet al2020.

Formation and evolution of the Eastern Kunlun Range,northern Tibet:Evidence from detrital zircon U-Pb geochronology and Hf isotopes

[J].Gondwana Research,8363-79.

[本文引用: 1]

Jiao JiangangHuang XifengYuan Haichaoet al2009.

Progress in the research of De’erni Cu (Co) ore deposit

[J].Journal of Earth Sciences and Environment,311):42-47.

Kui MingjuanZhang AikuiLiu Yongleet al2019.

The geological characteristics and prospecting mode of Tuolugou cobalt deposit,Qinghai

[J].Mineral Exploration,101):57-64.

[本文引用: 2]

Large R RDanyushevsky LHollit Cet al2009.

Gold and trace element zonation in pyrite using a laser imaging technique:Implications for the timing of gold in orogenic and carlin-style sediment-hosted deposits

[J].Economic Geology,105):635-668.

[本文引用: 1]

Large R RMaslennikov V VRobert Fet al2007.

Multistage sedimentary and metamorphic origin of pyrite and gold in the giant Sukhoi Log deposit,Lena gold province,Russia

[J].Economic Geology,1027):1233-1267.

[本文引用: 1]

Li HouminShen YuanchaoHu Zhengguo2000.

Geological characteristics of Tuolugou cobalt (Au) deposit in east Kunlun,Qinghai Province:A new type of cobalt (Au) deposit related to sodium-rich volcanic rocks

[J].Bulletin of Mineralogy,Petrology and Geochemistry,194):321-322.

Li HouminShen YuanchaoHu Zhengguoet al2001.

Geology of Tuolugou cobalt (gold) deposit in East-Kunlun Mountains,Qinghai Province,and the first discussion on its genesis

[J].Geology and Exploration,371):60-6495.

Liu YongleZhang AikuiLiu Zhiganget al2022.

Metallogenic model of gold deposits and genetic types in the western section of east Kunlun,Qinghai Province

[J].Gold Science and Technology,304):483-497.

Lu YiguanTu JiarunSun Kaiet al2021.

Cobalt occurrence and ore-forming process in the Chambishi deposit in the Zambian copper belt,Central Africa

[J].Earth Science Fro-ntiers,283):338-354.

Lund KTysdal R GEvans K Vet al2011.

Structural controls and evolution of gold-,silver-,and REE-bearing copper-cobalt ore deposits,Blackbird district,east-central Idaho:Epigenetic origins

[J].Economic Geology,106585-618.

[本文引用: 1]

Michel DGiuliani GOlivo G R1994.

As growth banding and the presence of Au in pyrites from the Santa Rita gold vein deposit hosted in Proterozoic metasediments,Goias State,Brazil

[J].Economic Geology,89193-200.

[本文引用: 1]

Pan Tong2005.

Study on the Metallogenic Series of Cobalt Deposits in Eastern Kunlun Orogenic Belt

[D].ChangchunJilin University.

Pan YTherens C2000.

The Werner Lake Co-Cu-Au deposit of the English River subprovince,Ontario,Canada:Evidence for an exhalative origin and effects of granulite facies metamorphism

[J].Economic Geology,951635-1656.

[本文引用: 1]

Pan YZhou WXu Ret al1996.

Early Paleozoic geological features and evolution of the Kunlun Mountains

[J].Science in China(Series D),264):302-307.

[本文引用: 1]

Putnis A2009.

Mineral replacement reactions

[J].Reviews in Mineralogy and Geochemistry,701):87-124.

[本文引用: 1]

Qian GXia FBrugger Jet al2011.

Replacement of pyrrhotite by pyrite and marcasite under hydrothermal conditions up to 220 ℃:An experimental study of reaction textures and mechanisms

[J].American Mineralogist,9611/12):1878-1893.

[本文引用: 1]

Qiu Z JFan H RGoldfarb Ret al2021.

Cobalt concentration in a sulfidic sea and mobilization during orogenesis:Implications for targeting epigenetic sediment-hosted Cu-Co deposits

[J].Geochimica et Cosmochimica Acta,3051-18.

[本文引用: 1]

Scharrer MKreissl SMarkl G2019.

The mineralogical variability of hydrothermal native element-arsenide (five-element) associations and the role of physicochemical and kinetic factors concerning sulfur and arsenic

[J].Ore Geology Reviews,113103025.

[本文引用: 1]

Slack J F2012.

Strata-bound Fe-Co-Cu-Au-Bi-Y-REE deposits of the Idaho cobalt belt:Multistage hydrothermal mineralization in a magmatic-related iron oxide copper-gold system

[J].Economic Geology,1071089-1113.

[本文引用: 2]

Vasyukova O VWilliams-Jones A E2022.

Constraints on the genesis of cobalt deposits:PartⅡ. applications to natural systems

[J].Economic Geology,1173):529-544.

[本文引用: 1]

Wang Denghong2019.

Study on critical mineral resources:Significance of research,determination of types,attributes of resources,progress of prospecting,problems of utilization,and direction of exploitation

[J].Acta Geologica Sinica,936):1189-1209.

Wang SCao MLi Get al2022a.

The occurrence of cobalt and implications for genesis of the Pusangguo cobalt-rich skarn deposit in Gangdese,Tibet

[J].Ore Geology Reviews,150105193.

[本文引用: 1]

Wang YWang ZChi Get al2022b.

Mechanisms of Ni Co enrichment in paleo-karstic bauxite deposits:An example from the Maochang deposit,Guizhou Province,SW China

[J].Chemical Geology,613121161.

[本文引用: 1]

Wang YanZhong HongCao Yonghuaet al2020.

Genetic classification,distribution and ore genesis of major PGE,Co and Cr deposits in China:A critical review

[J].Chinese Science Bulletin,6533):3825-3838.

Wang YufeiWang ZhilinLu Anhuaiet al2021.

Discovery of cobalt-rich pyrite in the Yangjiadong ore block of the Maochang bauxite deposit,Guizhou Province and its significance

[J].Acta Mineralogica Sinica,41Supp.1):460-474.

Wang Z LWang Y FPeng E Ket al2022c.

Micro-textural and chemical fingerprints of hydrothermal cobalt enrichment in the Jingchong Co-Cu polymetallic deposit,South China

[J].Ore Geology Reviews,142104721.

[本文引用: 5]

Wang Z LXu D RZhang Z Cet al2015.

Mineralogy and trace element geochemistry of the Co-and Cu-bearing sulfides from the Shilu Fe-Co-Cu ore district in Hainan Province of South China

[J].Journal of Asian Earth Sciences,113980-997.

[本文引用: 3]

Williams-Jones A EVasyukova O V2022.

Constraints on the genesis of cobalt deposits:Part I. theoretical considerations

[J].Economic Geology,1173):513-528.

[本文引用: 3]

Wu YEvans KHu Set al2021.

Decoupling of Au and As during rapid pyrite crystallization

[J].Geology,49827-831.

[本文引用: 1]

Xia RWang C MQing Met al2015.

Zircon U-Pb dating,geochemistry and Sr-Nd-Pb-Hf-O isotopes for the Nan’getan granodiorites and mafic microgranular enclaves in the East Kunlun Orogen:Record of closure of the Paleo-Tethys

[J].Lithos,23447-60.

[本文引用: 1]

Xu DeruWang ZhilinNie Fengjunet al2019.

Cobalt resources in China:Current research status and key scientific issues

[J].Bulletin of National Natural Science Foundation of China,332):125-132.

Zhai MingguoWu FuyuanHu Ruizhonget al2019.

Critical metal mineral resources:Current research status and scientific issues

[J].Bulletin of National Natural Science Foundation of China,332):106-111.

Zhang AikuiWang JianjunLiu Guanglianet al2021.

Main minerogenetic series in the Qimantag area,Qinghai Province and their metallogenic models

[J]. Acta Mineralogica Sinica,411):1-22.

Zhang DequanShe HongquanXu Wenyiet al2002a.

Geochemical constraint on the metallogenetical geological background and genesis of Tuolugou sedimentary-exhalative cobalt-gold deposit

[J].Acta Geoscientica Sinica,236):527-534.

Zhang DequanWang YanFeng Chengyouet al2002b.

Geology and geochemistry of Tuolugou exhalative-sedimentary Co-Au deposit,Qinghai Province

[J].Mineral Deposits,213):213-222.

Zhao JunxingLi GuangmingQin Kezhanget al2019.

A review of the types and ore mechanism of the cobalt deposits

[J].Chinese Science Bulletin,6424):2484-2500.

Zheng J HMao J WYang F Qet al2016.

Newly discovered native gold and bismuth in the Cihai iron‐cobalt deposit,Eastern Tianshan,Northwest China

[J].Acta Geologica Sinica,903):928-938.

[本文引用: 1]

Zhu Huaping2005.

Geological Characteristics and Prospecting Potential Evaluation of Tuoluguo Cobalt Deposit,Qinghai Province

[D].ChangchunJilin University.

段俊钱壮志黄喜峰2014.

青海德尔尼铜(钴)矿床矿石矿物特征及其地质意义

[J].地球科学与环境学报,361):201-209.

[本文引用: 1]

丰成友张德全党兴彦2005.

青海格尔木地区驼路沟钴(金)矿床石英钠长石岩锆石SHRIMP U-Pb定年——对“纳赤台群”时代的制约

[J].地质通报,246):501-505.

[本文引用: 3]

丰成友张德全屈文俊2006a.

青海格尔木驼路沟喷流沉积型钴(金)矿床的黄铁矿Re-Os定年

[J].地质学报,804):571-576.

[本文引用: 6]

丰成友张德全佘宏全2006b.

青海驼路沟钴(金)矿床形成的构造环境及钴富集成矿机制

[J].矿床地质,255):544-561.

[本文引用: 7]

丰成友张德全王富春2004.

青海东昆仑复合造山过程及典型造山型金矿地质

[J].地球学报,254):415-422.

[本文引用: 1]

焦建刚黄喜峰袁海潮2009.

青海德尔尼铜(钴)矿床研究新进展

[J].地球科学与环境学报,311):42-47.

[本文引用: 1]

奎明娟张爱奎刘永乐2019.

青海驼路沟钴矿床地质特征及找矿模式

[J].矿产勘查,101):57-64.

[本文引用: 4]

李厚民沈远超胡正国2000.

青海东昆仑驼路沟钴(金)矿床地质特征——一种新型的与富钠火山岩有关的钴(金)矿床

[J].矿物岩石地球化学通报,194):321-322.

[本文引用: 2]

李厚民沈远超胡正国2001.

青海东昆仑驼路沟钴(金)矿床地质特征及成因初探

[J].地质与勘探,371):60-6495.

[本文引用: 4]

刘永乐张爱奎刘智刚2022.

青海东昆仑西段金矿成因类型及成矿模式

[J].黄金科学技术,304):483-497.

[本文引用: 1]

卢宜冠涂家润孙凯2021.

中非赞比亚成矿带谦比希铜钴矿床钴的赋存状态与成矿规律

[J].地学前缘,283):338-354.

[本文引用: 2]

潘彤2005.

东昆仑成矿带钴矿成矿系列研究

[D].长春吉林大学.

[本文引用: 2]

王登红2019.

关键矿产的研究意义、矿种厘定、资源属性、找矿进展、存在问题及主攻方向

[J].地质学报,936):1189-1209.

[本文引用: 1]

王焰钟宏曹勇华2020.

我国铂族元素、钴和铬主要矿床类型的分布特征及成矿机制

[J].科学通报,6533):3825-3838.

[本文引用: 1]

王宇非王智琳鲁安怀2021.

黔中猫场杨家洞矿段铝土矿中富钴黄铁矿的发现与意义

[J].矿物学报,41增1):460-474.

[本文引用: 1]

许德如王智琳聂逢君2019.

中国钴矿资源现状与关键科学问题

[J].中国科学基金,332):125-132.

[本文引用: 1]

翟明国吴福元胡瑞忠2019.

战略性关键金属矿产资源:现状与问题

[J].中国科学基金,332):106-111.

[本文引用: 1]

张爱奎王建军刘光莲2021.

青海省祁漫塔格地区主要成矿系列与成矿模式

[J].矿物学报,411):1-22.

[本文引用: 3]

张德全佘宏全徐文艺2002a.

驼路沟喷气沉积型钴(金)矿床成矿地质背景及矿床成因的地球化学限制

[J].地球学报,236):527-534.

[本文引用: 4]

张德全王彦丰成友2002b.

驼路沟喷气沉积型钴(金)矿床的地质—地球化学

[J].矿床地质,213):213-222.

[本文引用: 7]

赵俊兴李光明秦克章2019.

富含钴矿床研究进展与问题分析

[J].科学通报,6424):2484-2500.

[本文引用: 1]

朱华平2005.

青海省驼路沟钴矿床地质特征及找矿潜力评价

[D].长春吉林大学.

[本文引用: 5]

/